

Determination of Radon Concentration in Artificial Fertilizers Using Nuclear Track Detector and Gamma-Rays Spectrometer

THESIS

Submitted in partial fulfillment of

Master degree of teacher preparation in Science

(Nuclear Physics)

By

Omar Ezzat Abd Elnaeem

Special diploma of teacher preparetion in science

(Physics)

TO
Physics Department
Faculty of Education
Ain Shams University

Supervised By

Prof. Dr. A .H .ASHRY Prof. Dr. W. M. Arafa
Prof. of nuclear physics prof .of nuclear physics
Ass. prof. Dr. M. A. Abou-leila
Ass. Prof .nuclear physics

2019

Ain Shams University Faculty of Education Physics Department

Title of thesis

Determination of radon concentration in artificial fertilizers using nuclear track detectors and gamma-rays spectrometer

Name of Student: Omar Ezaat Abd Elnaeem

Supervised By

Approved

1-Prof. Dr. A.H.ASHRY

Prof. of Nuclear Physics Faculty of Education Ain Shams University.

2-Prof. Dr. W. M. ARAFA

Prof. of Nuclear Physics Faculty of Women Ain Shams University.

3- Dr. M. ABOU-LEILA

Ass. Prof.of Nuclear physics Faculty of Education Ain Shams University.

Contents

Acknowledgment	iv
List of figures	vi
List of tables	viii
Abstract	X
Summary	xi
Chapter one	
1.Introduction	1
1.1. Isotopes of radon	2
1.2. Sources of radon in nature	6
1.3.Units for radon measurement	8
1.4.The uses of radon	9
1.5. The sources of radiation	9
1.5.1. Non – series radionuclide	10
1.5.2. Terrestrial radiation	10
1.6. Internal radiation	11
1.7 Interaction of gamma rays with matter	11
1.7.1 Photoelectric interaction	11
1.7.2 Compton scattering	12
1.7.3 Pair production	12
1.8. Units of radiation measurement	12
1.8.1 Radioactivity	13
1.8.2 Exposure	13
1.8.3. Absorbed dose	13
1.8.4. Dose equivalent	13
1.9. Radon measurement	14

1.9.1. Active method	14
1.9.1. a. The Lucas cell	14
1.9.1.b. Ionization chamber	15
1.9.1.c. The AB-5 portable radiation monitor	16
1.9.1.d. Surface barrier detector	17
1.9.2. Passive method	18
1.9.2.a. Solid state nuclear track detectors (SSNTDs)	18
1.9.2.b. Activated charcoal canister	20
1. 10 . Gamma ray spectrometry	22
Chapter two: Literature review	
2.1.Literature review	26
2.2. Aim of present work	38
Chapter three: Experimental methodology	
3 .1 . High –purity germanium detector	39
3 .1. 1. Detector bias	39
3 .1. 2.Preamplifier	39
3.1.3. Amplifier	40
3 .1. 4. Multi Channel Analyzer (MCA)	40
3. 1. 5. Shielding	41
3 .1. 6. Dewar and cryostat	42
3.1.7. Sample preparation for gamma spectroscopy	42
3.1.8 Calibration of gamma spectrometer	43
3.1.9 Samples measurement	45
3.1.10. Measurement of radionuclides concentration in the samples	45

3.2. Radiological hazard	46
3.3. Radon measurement	48
3.3.1 Sample preparation for radon measurement	50
3.4. Radium measurement	51
3.5. The exhalation rate	53
3.6. Sample collection	53
Chapter four Result and discussion	
4.1 Radon measurements	56
4.2. Gamma spectroscopy	68
4.2.1. a Activity of waste product and phosphate fertilizers	68
4.2.1. b. Radiological hazard	69
4.3. Comparisons with similar studies from other countries	82
4.4.a. Activity and hazard from soil and chemical fertilizers samples	83
4.4.b . Activity and hazard from chemical fertilizers samples	84
4.5.Recommendations	85
Conclusion	86
References	88
Arabic summary	

ACKNOWLEDGMENT

I wish to express my great thanks to God Almighty for seeing me through different levels of my education. Also I would like to take this opportunity to express my gratitude to those people giving me help throughout my whole study period. My deepest thanks and gratitude to Prof.Dr . Ashry Hassan Ashry, Professor of Nuclear Physics, Faculty of Education, Ain Shams University, for his continuous supervision, providing the necessary facilities and valuable encouragement during the course of this work. My deepest gratitude and all thanks to **Prof. Dr W.** M. Arafa, Professor of Nuclear Physics, Faculty of Women, Ain Shams University, for her continuous supervision, providing the necessary facilities and valuable encouragement during the course of this work. My deepest thanks and gratitude to.Dr. Mohamed Ahmed Abou-Leila, Associate Professor of nuclear Physics, Faculty of Education, Ain Shams University, for his continuous supervision, providing the necessary facilities and valuable encouragement during the course of this work. My deepest thanks and gratitude to Dr. Aymen M. Abd Elmoety and Dr. Ahmed M. Ismaeel for their great effort in finishing this study. All thanks and gratitude to Dr. Ahmed A. Taha and Dr. Waleed M. **Abdallah** from radiation protection lab. NRRA, Cairo, Egypt for their role in performing the experimental work using the HPGe detector.

DEDICATION

For all my love and well wishes, for my family, father, mother, wife and children, as well as to those who supported me during this study. This work is dedicated to all of them.

List of figures

No.	Figure	Page
1.1	²³⁸ U decay series that contains ²²² Rn	3
1.2	²³² Th decay series that contains ²²⁰ Rn	4
1.3	²³⁵ U decay series that contains ²¹⁹ Rn	5
1.4	Lucas cell	15
1.5	The ionization chamber	16
1.6	The AB-5 monitor	17
1.7	The surface barrier detector	18
1.8	Chemical structure of CR-39 track detector	19
1.9	Charcoal Passive collector(left hand side),	21
	Charcoal Active collector (right hand side)	
3.1	Schematic diagram for high-purity germanium	41
	spectrometer	
3.2	Energy calibration curve	44
3.3	Efficiency calibration curve	45
3.4	Track counting system	49
3.5	Sealed can technique	50
3.6	liner relation between radium concentration and	52
	track density	
4.1	Radon concentration as a function of sample number	57
4.2	Radium activity as a function of sample number	58

4.3	radium concentration as a function of radon	59
	concentration	
4.4	Depicts the mass exhalation as a function of radon	60
	concentration.	
4.5	The mass exhalation as a function of radium activity.	61
4.(6-9)	Gamma spectrum for different samples	72
4.10	The specific activity of ²³⁸ U in 16 natural samples	78
4.11	The specific activity of ²³² Th in 16 natural samples.	79
4.12	Depicts the specific activity of ⁴⁰ K in 16 natural	80
	samples.	
4.13	The relation between absorbed dose rate and radium	81
	equivalent.	

List of tables

No 1.1		
3.1	The strongest γ -lines used for activity calculation	46
3.2	Sites descriptions for soil samples and fertilizers	54
4.1	²²² Rn activity concentration, radium content, areal and mass exhalation rate for waste and soil near Abo-Zaboul factory (group A)	64
4.2	²²² Rn activity concentration, radium content, areal and mass exhalation rate for soil sample from El Ghabat village (group B) .	65
4.3	²²² Rn activity concentration, radium content, areal and mass exhalation rate for phosphate fertilizers samples (group C).	66
4.4	²²² Rn activity concentration, radium content, areal and mass exhalation rates for chemical fertilizers samples (group D)	67
4.5	The specific activity results from waste product of Abu-Zaabal fertilizers factory (group A) and radiation hazard.	76
4.6	The specific activity for samples of phosphate fertilizers (group c) and radiation hazard	77
4.7	The comparison between our works and other similar studying on phosphate fertilizers from other counters.	82
4.8	List the natural radionuclides concentration in soil samples	83

4.9 the activity and hazard parameters due to chemical fertilizes 84 samples .

Abstract

In this work, the specific activities of natural radionuclides in synthetic fertilizers and some soil samples were studied using gamma spectroscopy and sealing technique. Also, radon concentrations in 42 fertilizers and soil samples were measured by passive technique detector (CR-39). Radon exhalation rates in terms of mass and area were also calculated using "sealed can technique" using CR-39 SSNTDs.

The average areal exhalation rates of radon are found to be $(9.6\pm0.40,\ 11.40\ \pm0.90,\ 0.30\pm0.05\ \text{and}\ 0.38\pm0.02)$ Bq m⁻²h⁻¹ for waste product, phosphate fertilizers, chemical fertilizers and soil samples, respectively. Whereas, the mean average mass exhalation rates are estimated to be $0.30\pm0.02,\ 0.40\pm0.02,\ 0.01\pm0.001$ and 0.01 ± 0.001 Bq kg⁻¹ h⁻¹ for waste product, phosphate fertilizers, chemical fertilizers and soil samples, respectively.

The average specific activity concentrations of 238 U, 226 Ra, 232 Th and 40 K in waste product samples were found to be 246.13±20, 474.47±30, 9.19±0.70 and 91.25±8.50 Bq kg⁻¹, respectively. In phosphate fertilizer samples were found to be 295.29±20, 630±40, 7.31±0.50 and 39.63±2.50 Bq kg⁻¹, respectively. For soil samples, the specific activity concentrations for 238 U, 226 Ra, 232 Th and 40 K, have average values of 14±1.50, 21±40, 12.8±1.20 and 218.9±20 Bq kg⁻¹. Radiological hazard indices such as radium equivalent activity (Ra_{eq}), absorbed gamma dose rates (D_R) at 1m above ground, annual external effective dose rate, annual effective dose equivalent (AEDE), internal hazard index (H_{in}), external hazard index (H_{ex}) and annual gonadal dose equivalent (AGDE) were evaluated.

The value of radium concentration in all soil samples except for

samples near the Abu-Zaabal factory is less than the permitted value of 370 Bq kg⁻¹ authorized by organization for Economic corporation and development. The specific activity values of ²³⁸U,²³²Th and ⁴⁰K in soil samples from Al-Ghabat village and in chemical fertilizers are lower than the recommended value of 50, 50 and 500 Bq kg⁻¹, respectively, so no radiation hazard is considered with them. While phosphate fertilizers and soils surrounding Abu Zaabal factory are higher than the recommended value. Also, radiation hazard indices for phosphate fertilizers are high, so it is considered a risk to health.

The dealers and farmers dealing with phosphate fertilizers should take care as it contains high concentration of radionuclides. The Abu-Zaabal factory waste product must be removed safely as it contains the highest concentration of ²³⁸U. Finally, the results obtained from the two used techniques (SSNTDs and gamma spectrometer) are well correlated with each other and with other previous studies performed in Egypt.

Summary

The aim of this study is to estimate the concentration of radon, the specific activity of the element of radium, the rate of mass and surface emission of radon from samples of phosphate fertilizers and soil samples fertilized with these fertilizers using the CR-39 nuclear track detector, in addition to determine the level of radioactivity and radiation risk factors of the investigated samples using High-purity germanium detector. The samples were collected from Abu-Zaabal factory products for phosphate fertilizers, factory waste and samples of agricultural soil fertilized with these products and from the agricultural soil of the Al-Ghabat village of El Balyana district of Sohag governorate, located in the southern west of the governorate. In order to fulfill our target, the thesis consists of four chapters.

First chapter

It consists of an introduction, radon isotopes, radioactive series, radon sources, the units used in measure radon concentration, sources of radiation, gamma-ray interactions with matter, theoretical aspects, and radon measurement techniques (active-passive method), semiconductor detector and Na I (Ti) detector.

Second chapter:

Literature review, in this chapter some of the pervious published paper in the field of radon concentration measurements and natural radioactivity levels have been summarized.

Third chapter

It contains some information on how samples are collected, samples preparation and the two techniques used in the present investigation. The specific activity of ²³⁸U, ²³²Th, and ⁴⁰K are also measured using active

techniques. Finally, radon, radium and radon exhalation rates are also evaluated using CR-39 nuclear track detector.

Fourth chapter

In this chapter, the results obtained throughout the present study have been listed and discussed, which are, radon concentration, radium activity, radon areal exhalation rate and mass exhalation rate of ²²²Rn using track detectors. In addition, the specific activity of natural radionuclides of ²³⁸U, ²³²Th and ⁴⁰K using high purity germanium spectrometer and the calculation of radiological hazard. Finally, our result are compared with the average published results from similar studies from other countries.