ISOLATION, MOLECULAR CHARACTERISATION AND IMPROVEMENT OF PECTINASE GENE(S) FROM LOCAL BACTERIAL ISOLATES

By

NAGWA MOHAMED ABD EL-AZIZ ALY

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2016

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

2019

Approval Sheet

ISOLATION, MOLECULAR CHARACTERISATION AND IMPROVEMENT OF PECTINASE GENE(S) FROM LOCAL BACTERIAL ISOLATES

By

NAGWA MOHAMED ABD EL-AZIZ ALY

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2016

This thesis for Ph.D. degree has been approved by: Dr. Makhlouf Mohamed Mahmoud Bekhit Prof. of Genetics, Faculty of Agriculture, Benha University Dr. Alia Ahmed Mohamed EL-Seoudiy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University Dr. Samir Abd EL-Aziz Ibrahim Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University Dr. Aly Zain Elabidin Abd EL-Salam Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University Date of Examination: 10 / 6 / 2019

Nagwa M.A. Aly (2019), Ph.D., Fac. Agric., Ain Shams Univ.

ISOLATION, MOLECULAR CHARACTERISATION AND IMPROVEMENT OF PECTINASE GENE(S) FROM LOCAL BACTERIAL ISOLATES

By

NAGWA MOHAMED ABD EL-AZIZ ALY

B.Sc. Agric., Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2016

Under the supervision of:

Dr. Aly Zain Elabidin Abd EL-Salam

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principle Supervisor).

Dr. Samir Abd EL-Aziz Ibrahim

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Ashraf Gamil Attallah

Researcher Prof. of Molecular Genetics, Department of Microbial Genetics, National Research Center.

ABSTRACT

Nagwa Mohamed Abd El-Aziz Aly. Isolation, Molecular Characterisation and Improvement of Pectinase Gene(s) From Local Bacterial Isolates. Unpublished PhD Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2019.

In this study, twenty two bacterial isolates were isolated from agricultural crop waste soil at National Research Center. After optimization conditions using different parameters to test pectinase specific activity for high seven and two leaky isolates. The maximum pectinase specific active isolates were No. 2, 7 and 22 which recorded 71.10, 79.98 and 91.45 U/ml, respectively. Biochemical identification depended on morphological, physiological and biochemical parameters for these isolates No.2, 7 and 22 was confirmed with molecular identification by PCR amplification and sequencing of 16S rRNA gene, identified as; Bacillus filamentosus N2, Bacillus endophyticus N7 and Klebsiella oxytoca N22. These most three productive identified strains were treated in third step mutagenesis with ethedium bromide (Eth.Br.) and hydrogen peroxide (H₂O₂) for creating super productive mutants. After optimization conditions using different parameters to test pectinase specific activity of hyper six mutants resulted from third step mutations experiments, the maximum mutant in pectinase specific activity was klebseilla oxttoca H6 which recorded (185.8 U/ml). Nine pectinase genes from strain Klebsiella oxytoca N22 and its high mutant Klebsiella oxytoca H6 were isolated and completely sequenced. Strain *Klebsiella oxytoca* N22 sequences results showed that all pectinase encoding genes showed high similarity with the reference strain *Klebsiella oxytoca* jko3.Mutant Klebsiella oxytoca H6 sequences results showed that there were some pectinase encoding genes showed low similarity and some pectinase encoding genes showed high similarity with the reference strain.

Key words: Pectinase, pectinase specific active isolates, 16s RNA gene, third step mutagenesis, mutants, pectinase genes.

ACKNOWLEDGEMENT

At first, I would like to thank **ALLAH**, the Lord, the most Gracious, and the most Merciful. Allah given me the power to believe in my passion and pursue my dreams. I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I would like to express my great thanks and sincere gratitude to my supervisor, **Dr. Aly Zain ELabidin Abd EL-Salam**, for his excellent guidance, caring, patience, encouragement, his proofreading and discussion of my research.

I would like to express my great thanks and sincere gratitude to my supervisor **Dr. Samir Abd EL-Aziz Ibrahim**, for his kind supervising, continuous help and encouragement along this study. And his excellent guidance, patience, caring, encouragement, proofreading and discussion of my study.

I would like to convey my gratitude to my supervisor, **Dr. Ashraf Gamil Attallah**, whose expertise, understanding, and patience, added considerably to my graduate experience. I appreciate his continues guidance in all research studies and his assistance in writing this thesis.

Very special thanks to, **Dr. Samir Khalaf Abd EL-Aal** for his kind supervision, patient guidance, encouragement and advice.

High very thank to Prof. **Dr. Effat Abbas Mohamed Soliman** for his kind supervision and being so helpful along this study.

Finally I would like to thanks **my family** for their tremendous support, encouragement and constant love in all my life.

CONTENTS

		Page
	LISTOF TABLES	VI
	LIST OF FIGURES	VII
	LIST OF ABBREVIATION	XV
	INTRODUCTION	1
	REVIEW OF LITERATURE	3
1.	Pectin	3
2.	Classification of pectic substances	4
2.1.	Protopectin	4
2.2.	Pectic acids	4
2.3.	Pectinic acids	4
2.4.	Pectin	5
3.	Structure of pectic substances	5
4.	Isolation and identification of pectinase producing	6
	microorganisms	
5.	Medium optimization conditions for pectinase	8
	production improvement	
6.	Classification of pectinases	9
6.1.	Pectinesterase (PE)	10
6.2.	Polygalacturonase (PGases)	10
6.3.	Pectatelyase (PL)	10
6.4.	Pectin lyase (PNL)	10
7.	Genetic improvement of pectinase production	10
7.1.	Mutagenesis for pectinase production improvement	10
8.	Bacterial pectinase genes involved in pectin degradation	12
9.	Biotechnological applications of pectinases	14
	MATERIALS AND METHODS	16
	MATERIALS	16
1.	Collected of agricultural crop waste soil	16
2.	Bacterial isolates	16
3.	Media	16

3.1.	Luria-Bertani (LB) medium	16
3.2.	Pectinase screening agar medium (PSAM)	16
3.3.	Pectinase production medium	17
4.	Stock solutions	17
4.1.	Isolation of pectinase producing bacterial isolates stock	17
	solution	
4.2.	Pectinase activity assay stock solution	17
4.3.	Mutagenesis for pectinase production improvement stock	18
	solution	
5.	Computer software	18
6.	Primers	19
6.1.	16S rDNA universal primers	19
6.2.	Pectinase genes primers	19
7.	Buffers	21
7.1.	DNA isolation buffers	21
7.1.1.	Agarose gel electrophoresis buffers	21
7.1.1.1.	Tris-borate-EDTA (TBE)(5X) buffer	21
7.1.1.2.	Sample loding dye (5X) buffer	21
7.1.1.3.	Ethedium bromide	21
7.1.2.	Gel preparation	22
7.1.3.	Sample preparation	22
8.	Kits	22
8.1.	GeneJet genomic DNA purification Kit (Thermo)	22
8.2.	DreamTaq Green PCR Master Mix (Fermentas)	22
8.3.	MEGA Quick-Spin total fragment DNA purification kit	22
	(Thermo)	
	METHODS	22
1.	Collection, isolation and screening of pectinase	22
	producing bacterial isolates	
2.	Pectinase activity assay	23
2.1.	Pectinase enzyme production	23
2.2.	Pectinase activity assay	23

3.	Protein content determination	23
4.	Optimization of different factors involved in maximum	24
	Pectinase production	
4.1.	Effect of various incubation times on pectinase	24
	production	
4.2.	Effect of different pH on pectinase production	24
4.3.	Effect of various inoclume concentrations on pectinase	24
	production	
4.4.	Effect of various pectin concentrations on pectinase	25
	production	
4.5.	Effect of various carbon sources on pectinase production	25
4.6.	Effect of various nitrogen sources on pectinase	25
	production	
5.	Identification of pectinase producing bacterial isolates	26
5.1.	Biochemical identification of pectinase producing	26
	bacterial isolates	
5.2.	Molecular identification of pectinase producing bacterial	26
	isolates by PCR amplification and sequencing of 16S	
	rRNA and pectinase genes	
5.2.1.	Extraction of genomic DNA	26
5.2.2.	Processing of polymerase chain reaction (PCR) for 16s	27
	rRNA and pectinase genes amplification	
5.2.3.	Purification of PCR product	28
5.2.4.	Agarose gel electrophoresis preparation	29
5.2.5.	Sequencing of purified 16s rRNA and pectinase genes	29
5.2.6.	Phylogenetic analysis of bacterial isolates based on 16s	29
	rRNA and pectinase genes	
6.	Ethedium bromide (Eth.Br.) and hydrogen peroxide	30
	(H ₂ O ₂) mutation induction and mutant selection	
6.1.	Preparation of cell suspension	30
6.2.	Strain improvement	30

	RESULTS AND DISCUSSION	32
1.	Collection, isolation and screening of pectinase	32
	producing bacterial isolates	
2.	Medium optimization conditions of selected bacterial	34
	isolates for pectinase production improvement	
3.	Identification of selected pectinase producing bacterial	38
	isolates	
3.1.	Biochemical identification of selected pectinase	38
	producing bacterial isolates	
3.2.	Molecular identification of selected pectinase producing	39
	bacterial isolates	
3.2.1.	Molecular identification of isolate No.7 by using 16S	41
	rRNA gene alignment in genbank (Blast)	
3.2.2.	Molecular identification of isolate No.2 by using 16S	42
	rRNA gene alignment in genbank (Blast)	
3.2.3.	Molecular identification of isolate No.22 by using 16S	44
	rRNA gene alignment in genbank (Blast)	
4.	Ethedium bromide (Eth.Br.) and hydrogen peroxide	48
	(H ₂ O ₂) mutation induction and mutant selection	
4.1.	Bacillus endophyticus N7 ethedium bromide (Eth.Br)	49
	and hydrogen peroxide (H ₂ O ₂) mutation induction for	
	pectinase production improvement	
4.2.	Bacillus filamentosus N2 ethedium bromide (Eth.Br)	53
	and hydrogen peroxide (H ₂ O ₂) mutation induction for	
	pectinase production improvement	
4.3.	Klebsiella oxytoca N22 ethedium bromide (Eth.Br) and	56
	hydrogen peroxide (H ₂ O ₂) mutation induction for	
	pectinase production improvement	
5.	Medium optimization conditions of selected mutants for	60
	pectinase production improvement	

Nagwa M.A. Aly (2019), Ph.D., Fac. Agric., Ain Shams Univ.

6	Isolation and complete sequencing of pectinase genes	66
	from Klebsiella oxytoca N22 and mutant Klebsiella	
	oxytoca H6	
6.1.	Klebsiella oxytoca N22 pectinase genes isolation and	66
	complete sequencing	
6.2.	Mutant of Klebsiella oxytoca H6 pectinase genes	96
	isolation and complete sequencing	
	SUMMARY	139
	REFERENCES	150
	ARARIC SUMMARV	

LIST OF TABLES

Гable No.		Page
1	Oligonucleotide universal primers used for 16S	19
	rDNA PCR amplification and sequencing	
2	Oligonucleotide specific primers used for pectinase	20
	genes PCR amplification and sequencing	
3	Pectinase activities of different twenty two bacterial	33
	isolates	
4	Optimization of culture conditions of the most	35
	pectinase producing bacterial isolates	
5	Phenotypic and biochemical characteristics of	39
	selected isolates	
6	Pectinase activities characterization of survived	50
	colonies of Bacillus endophyticus N7	
7	Pectinase activities characterization of survived	54
	colonies of Bacillus filamentosus N2	
8	Pectinase activities characterization of survived	57
	colonies of Klebsiella oxytoca N22	
9	Optimization of culture conditions of high selected	61
	mutants for pectinase production	
10	Classification of pectinase encoding genes families	67
	of strain Klebsiella oxytoca N22 and product length	
	(bp)	
11	Classification of pectinase encoding genes families	97
	of mutant Klebsiella oxytoca H6 and product length	
	(bp)	

LIST OF FIGURES

Fig. No.		Page
1.	Plant cell wall structure	3
2.	Main structural motif of pectic substances	6
3.	Zone of pectin hydrolysis on pectinase screening agar	32
	medium (PSAM) of some isolates after 24 h incubation	
	/ 37°C	
4.	Pectinase activities of different twenty two bacterial	33
	isolates	
5.	Agarose gel electrophoreses of PCR product for 16S	40
	rRNA gene of isolates. Lane1: M, 1 kb DNA ladder;	
	Lane 2, 3 and 4: Isolates No. 2, 7 and 22 16S rRNA	
	gene amplicon	
6.	Nucleotides sequence of isolate No.7 16S rRNA open	41
	reading frame (ORF) gene	
7.	Nucleotides alignment in GenBank (Blast) of isolate	41
	No.7 16S rRNA open reading frame (ORF) gene	
8.	Phylogenetic tree based on 16S rRNA gene sequences	42
	of isolate No.7	
9.	Nucleotides sequence of isolate No.2 16S rRNA open	43
	reading frame (ORF) gene	
10.	Nucleotides alignment in GenBank (Blast) of isolate	43
	No.2 16S rRNA open reading frame (ORF) gene	
11.	Phylogenetic tree based on 16S rRNA gene sequences	44
	of isolate No.2	
12.	Nucleotides sequence of isolate No.22 16S rRNA open	45
	reading frame (ORF) gene	
13.	Nucleotides alignment in GenBank (Blast) of isolate	45
	No.22 16S rRNA open reading frame (ORF) gene	
14.	Phylogenetic tree based on 16S rRNA gene sequences	46
	of isolate No.22	

Fig. No.		Page
15.	Fragment size of amplified pectinase genes for strain	69
	Klebsiella oxytoca N22	
16.	Klebsiella oxytoca N22 gene No.1 polygalacturonase	70
	(PGase) open reading frame (ORF) nucleotides	
	sequence and alignment in GenBank (Blast)	
17.	Phylogenetic tree of strain Klebsiella oxytoca N22	71
	gene No.1 polygalacturonase (PGase)	
18.	Klebsiella oxytoca N22 protein sequence and	72
	alignment in GenBank (Blastn) encoded by gene No.1	
	polygalacturonase (PGase)	
19.	Klebsiella oxytoca N22 gene No.2 polygalacturonase	73
	(PGase) open reading frame (ORF) nucleotides	
	sequence and alignment in GenBank (Blast)	
20.	Phylogenetic tree of strain Klebsiella oxytoca N22	74
	gene No.2 polygalacturonase (PGase)	
21.	Klebsiella oxytoca N22 protein sequence and	75
	alignment in GenBank (Blastn) encoded by gene No.2	
	polygalacturonase (PGase)	
22.	Klebsiella oxytoca N22 gene No.3 polygalacturonase	76
	(PGase) open reading frame (ORF) nucleotides	
	sequence and alignment in GenBank (Blast)	
23.	Phylogenetic tree of strain Klebsiella oxytoca N22	77
	gene No.3 polygalacturonase (PGase)	
24.	Klebsiella oxytoca N22 protein sequence and	78
	alignment in GenBank (Blastn) encoded by gene No.3	
	polygalacturonase (PGase)	
25.	Klebsiella oxytoca N22 gene No.4	79
	exopolygalacturonate lyase (Exo-PGL) open reading	
	frame (ORF) nucleotides sequence and alignment in	
	GenBank (Blast)	
26.	Phylogenetic tree of strain Klebsiella oxytoca N22	80

Fig. No.		Page
	gene No.4 exopolygalacturonate lyase (Exo-PGL)	
27.	Klebsiella oxytoca N22 protein sequence and	81
	alignment in GenBank (Blastn) encoded by gene No.4	
	exopolygalacturonate lyase (Exo-PGL)	
28	Klebsiella oxytoca N22 gene No.5 pectate	82
	disaccharide-lyase (PEL) open reading frame (ORF)	
	nucleotides sequence and alignment in GenBank	
	(Blast)	
29	Phylogenetic tree of Klebsiella oxytoca N22 gene No.5	83
	pectate disaccharide-lyase (PEL)	
30	Klebsiella oxytoca N22 protein sequence and	84
	alignment in GenBank (Blastn) encoded by gene No.5	
	pectate disaccharide-lyase (PEL)	
31	Klebsiella oxytoca N22 gene No.6 oligogalacturonate	85
	lyase (OGL) open reading frame (ORF) nucleotides	
	sequence and alignment in GenBank (Blast)	
32	Phylogenetic tree of strain Klebsiella oxytoca N22	86
	gene No.6 oligogalacturonate lyase (OGL)	
33	Klebsiella oxytoca N22 protein sequence and	87
	alignment in GenBank (Blastn) encoded by gene No.6	
	oligogalacturonate lyase (OGL)	
34	Klebsiella oxytoca N22 gene No.7 oligogalacturonate	88
	lyase (PL) open reading frame (ORF) nucleotides	
	sequence and alignment in GenBank (Blast)	
35	Phylogenetic tree of Klebsiella oxytoca N22 gene No.7	89
	oligogalacturonate lyase (PL)	
36	Klebsiella oxytoca N22 protein sequence and	90
	alignment in GenBank (Blastn) encoded by gene No.7	
	oligogalacturonate lyase (PL)	
37	Klebsiella oxytoca N22 gene No.8 pectin	91
	methylesterase (CE) open reading frame (ORF)	

Fig. No.		Page
	nucleotides sequence and alignment in GenBank	
	(Blast)	
38	Phylogenetic tree of strain Klebsiella oxytoca N22	92
	gene No.8 pectin methylesterase (CE)	
39	Klebsiella oxytoca N22 protein sequence and	93
	alignment in GenBank (Blastn) encoded by gene No.8	
	pectin methylesterase (CE)	
40	Klebsiella oxytoca N22 gene No.9 pectin	94
	methylesterase (CE) open reading frame (ORF)	
	nucleotides sequence and alignment in GenBank	
	(Blast)	
41	Phylogenetic tree of strain Klebsiella oxytoca N22	95
	gene No.9 pectin methylesterase (CE)	
42	Klebsiella oxytoca N22 protein sequence and	96
	alignment in GenBank (Blastn) encoded by gene No.9	
	pectin methylesterase (CE)	
43	Fragment size of amplified pectinase genes for mutant	99
	Klebsiella oxytoca H6	
44	Mutant Klebsiella oxytoca H6 nucleotides sequence	100
	and alignment in GenBank (Blast) for gene No.1	
	polygalacturonase (PGase) open reading frame (ORF)	
45	Phylogenetic tree for gene No.1 polygalacturonase	101
	(PGase) of mutant Klebsiella oxytoca H6	
46	Mutant klebsiella oxytoca H6 protein sequence and	102
	alignment in GenBank (Blastn) encoded by gene No.1	
	polygalacturonase (PGase)	
47	Predicted second structure of protein encoded by gene	103
	No.1 polygalacturonase (PGase) for mutant Klebsiella	
	oxytoca H6 and strain Klebsiella oxytoca jko3	
48	Mutant Klebsiella oxytoca H6 nucleotides sequences	104
	and alignment in GenBank (Blast) for gene No.2	