

Development and performance evaluation of hybrid magnetic composites as solid phase extractants for some lanthanides

A Thesis Submitted by

Mohamed Abd El-Hameed Attia Mohamed

M. Sc. of science in chemistry (2015)

Assistant Lecturer

Nuclear Chemistry Department – Hot Laboratories Center Atomic Energy Authority

For the Ph. D. Degree of Science in Chemistry (Inorganic Chemistry)

 \mathcal{T}_0

Chemistry Department
Faculty of Science
Ain Shams University

Development and performance evaluation of hybrid magnetic composites as solid phase extractants for some lanthanides

A Thesis Submitted by

Mohamed Abd El-Hameed Attia Mohamed

M. Sc. of science in chemistry (2015)

Assistant Lecturer

Nuclear Chemistry Department – Hot Laboratories Center

Atomic Energy Authority

Under Supervision of

Prof. Dr. Ebtisam Ahmed Saad

Prof. of Inorganic and Radiation Chemistry, Chemistry Dept., Faculty of Science, Ain Shams University

Prof. Dr. Reda Rashad Sheha

Prof. of Inorganic and Radiochemistry,
Head of Nuclear Chemistry Dept.,
Hot Laboratories Center,
Atomic Energy Authority

Prof. Dr. Hanan Hussien Someda

Prof. of Radiochemistry, Head of Radioisotopes Production Division, Hot Laboratories Center, Atomic Energy Authority

Dr. Saber Ibrahim Moussa

Lecturer of Radiochemistry,
Nuclear Chemistry Dept.,
Hot Laboratories Center,
Atomic Energy Authority

Approval Sheet

Thesis Title:

"Development and performance evaluation of hybrid magnetic composites as solid phase extractants for some lanthanides"

Submitted by

Mohamed Abd El-Hameed Attia Mohamed

M. Sc. Chemistry, 2015 For the Ph.D. Degree of Science in Chemistry (Inorganic Chemistry)

To

Chemistry Department, Faculty of Science, Ain Shams University

This thesis for Ph.D. Degree has been approved by:

1- Prof. Dr. Ebtisam Ahmed Saad

Prof. of Inorganic and Radiation Chemistry, Faculty of Science, Ain Shams University.

2- Prof. Dr. Hanan Hussien Someda

Prof. of Radiochemistry, Hot Laboratories Center, Atomic Energy Authority.

3- Prof. Dr. Reda Rashad Sheha

Prof. of Inorganic and Radiochemistry, Hot Laboratories Center, Atomic Energy Authority.

4- Dr. Saber Ibrahim Moussa

Lecturer of Radiochemistry, Hot Laboratories Center, Atomic Energy Authority.

Head of Chemistry Department

Prof. Dr. Ibrahim Hussieny Ali Badr

Approval Sheet

Thesis Title:

"Development and performance evaluation of hybrid magnetic composites as solid phase extractants for some lanthanides"

Submitted by

Mohamed Abd El-Hameed Attia Mohamed

M. Sc. Chemistry, 2015
For the Ph.D. Degree of Science in Chemistry
(Inorganic Chemistry)

To

Chemistry Department, Faculty of Science, Ain Shams University

This thesis for Ph.D. Degree has been approved by:

1- Prof. Dr. Abdelhakim Taha Kandil

Prof. of Inorganic and Nuclear Chemistry, Faculty of Science, Helwan University.

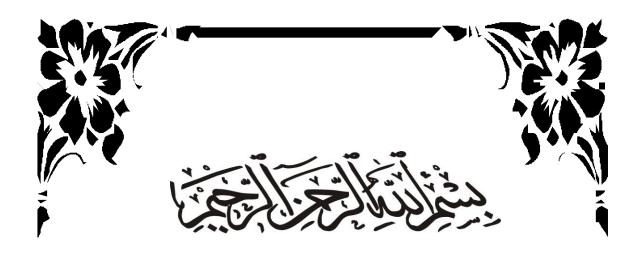
2- Prof. Dr. Sadeek Atia Sadeek

Prof. of Inorganic Chemistry, Faculty of Science, Zagazig University.

3- Prof. Dr. Ebtisam Ahmed Saad

Prof. of Inorganic and Radiation Chemistry Faculty of Science, Ain Shams University.

4- Prof. Dr. Hanan Hussien Someda


Prof. of Radiochemistry:
Hot Laboratories Center, Atomic Energy Authority.

Date of discussion

23/4/2019

Head of Chemistry Department

Prof. Dr. Ibrahim Hussieny Ali Badr

قَاثُوا سُنْجَانَكَ لا عِلْمَ لَنَا إلا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ

مندق الله العظيم

سورة البقرة: آية ٣٢

Dedicated to

(The Spirit of My Father)

To

My Dear Mother, My Lovely Wife, My Children,
My Brother and My Sisters

All of those who Love me

Mohamed A. Attia

<u>Acknowledgement</u>

First, I would like to thank ALLAH, most merciful, who blesses my effort, shows me the way and enables me to present this work in an acceptable style. On the top, my parents, my wife, my children and the rest of my family. None of the things I have done would be done without their endless support, patience and encouragement throughout my years of study.

I would like to express my deeply heart thanks to **Prof. Dr. Ebtisam Ahmed Saad** (Prof. of Inorganic and Radiation Chemistry, Faculty of Science, Ain Shams University) for giving me the honor of working under her supervision, and her unforgettable sincere encouragement.

I would like to express my deeply heart thanks to **Prof. Or. Hanan** Hussien Someda (Prof. of Radiochemistry, Atomic Energy Authority) for giving me the honor of working under her supervision, and her unforgettable sincere encouragement.

No words can express my feeling and respect to **Prof. Dr. Reda Rashad Sheha** (Prof. of Inorganic and Radiochemistry, Atomic Energy
Authority) for giving me the honor of working under his supervision,
his backing and encouragement gave me a push to this work.

I wish also to express my deep thanks to **Dr. Saber Ibrahim Moussa** (Lecturer of Radiochemistry, Atomic Energy Authority) who supported me during the study and the investigations of all the stages of the experimental work.

Mohamed A. Attia

Publications

Publications

Applied Radiation and Isotopes 145 (2019) 85-94

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Hydroxyapatite/NiFe₂O₄ superparamagnetic composite: Facile synthesis and adsorption of rare elements

Mohamed A. Attia^a, Saber I. Moussa^{a,*}, Reda R. Sheha^a, Hanan H. Someda^a, Ebtsam A. Saad^b

a Nuclear Chemistry Dept., Hot Lab Center, Atomic Energy Authority, P.O. 13759, Cairo, Egypt

HIGHLIGHTS

- A superparamagnetic hydroxyapatite composite (CaHAP/NF) was successfully synthesized.
- The composite is a crystalline in nature, possesses a high porous structure and chemically stable at pH > 3.5.
- \bullet $^{152+154}$ Eu and 160 Tb radionuclides were effectively removed using the synthesized magnetic composite.
- REEs were sufficiently recovered using FeCl₃ and EDTA as eluents.
- The chromatographic separation of Eu(III) from Tb(III) was significantly attained using EDTA.

ARTICLE INFO

Keywords: Hydroxyapatite Ferrite Superparamagnetic Eu(III) Tb(III)

ABSTRACT

A magnetic hydroxyapatite composite (CaHAP/NF) derived from calcium hydroxyapatite [Ca10(PO4)6(OH)2] and nickel ferrite [NiFe2O4] was successfully synthesized by a coprecipitation method. The synthesized com posite was characterized using Fourier transform infrared spectroscopy (FT-IR), X-Ray diffractometer (XRD), thermogravimetric differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Results clarify that the composite is a crystalline in nature, thermally stable up to 800 °C and possesses a high porous structure. The synthesized CaHAP/NF composite is a superparamagnetic material easily separated from aqueous solutions and would dissociate to some extent in strongly acidic conditions. The synthesized material was successfully applied as a solid phase for separation of Eu(III) and Tb(III) ions from aqueous solutions. The effect of various parameters (e.g. solution pH, equilibrium time and ionic strength) on sorption process was studied in static conditions. The synthesized sorbent could be considered as an efficient candidate for separation and recovery of Eu(III) and Tb(III). The sorption process was very fast initially, reached equilibrium within 6 h of contact and independent of ionic strength. The maximum sorption capacity values were 137.35 and 130.43 mg $\rm g^{-1}$ for Eu(III) and Tb(III), respectively. Desorption of Eu(III) and Tb(III) from loaded sample was studied using various eluents and maximum recovery was obtained using FeCl3 and EDTA solutions. More importantly, both FeCl3 and EDTA were individually applied as eluents in chromatographic separation of Eu(III) and Tb(III) in CaHAP/NF packed column and the best separation results were obtained by

1. Introduction

Rare earth elements (REEs) consist of 17 elements of the periodic table including 15 lanthanides along with yttrium and scandium (Liatsou et al., 2015; Anastopoulos et al., 2016; Jacinto et al., 2018). They are further subdivided into light and heavy rare earth elements on the basis of their atomic number. REEs have unique properties and often termed as "seeds of technology" (Ponou et al., 2014). They are

widely used in different applications such as metallurgy, electronics, alloys, fertilizers, lasers, magnets, superconductors, catalysis, chemical reagents and nuclear energy (Smith et al., 2016; Rychkov et al., 2018). The total demand for REEs was increased from 128,000 t in 2011 to 170,000 t in 2015, while it is expected to rise to 255,000 t in 2020 with a growth rate about 6–10%/year (Fernandez, 2017). Such expected great demand for rare earth elements is resulted mainly from their widespread applications in many fields of human life. With ever-

E-mail addresses: mohamed.attia@eaea.org.eg (M.A. Attia), saber.moussa@eaea.org.eg (S.I. Moussa), reda.sheha@eaea.org.eg (R.R. Sheha).

https://doi.org/10.1016/j.apradiso.2018.12.003

Available online 05 December 2018 0969-8043/ © 2018 Published by Elsevier Ltd.

^b Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

^{*} Corresponding author.

Contents

Contents

Contents

Contents	Page	
List of Tables.	v	
List of Figures.	X	
List of Abbreviations.	xix	
Aim of the work.	XX	
Abstract.	xxi	
CHAPTER 1		
INTRODUCTION		
1. Introduction.	1	
1.1. Characteristics of the lanthanides.	1	
1.2. Occurrence and abundance of lanthanides.	3	
1.3. Lanthanide ores.	4	
1.4. Extraction of lanthanides from ores.	4	
1.5. Separation of lanthanides.	5	
1.5.1. Precipitation.	5	
1.5.2. Chemical separation.	6	
1.5.3. Fractional crystallization.	6	
1.5.4. Solvent extraction.	7	
1.5.5. Ion exchange chromatography.	8	
1.6. Application of lanthanides.	11	
1.7. The studied lanthanides.	13	
1.7.1. Samarium.	13	
1.7.2. Europium.	14	
1.7.3. Terbium.	15	
1.8. Nano-materials.	15	
1.9. Literature survey.	17	

CHAPTER 2

EXPERIMENTAL

2. Experimental.	18 18
2.1. Chemicals and reagents.	
2.2. Apparatus.	19
2.3. Synthesis of sorbents.	20
2.3.1. Nickel ferrite.	20
2.3.2. Calcium hydroxyapatite.	21
2.3.3. Calcium hydroxyapatite/Nickel ferrite.	21
2.3.4. Nickel ferrite/Calcium hydroxyapatite.	22
2.3.5. Calcium hydroxyapatite–Nickel ferrite.	23
2.4. Characterization techniques.	24
2.4.1. Brunauer–Emmett–Teller (BET) surface area.	24
2.4.2. Fourier transform infrared spectroscopy (FT–IR).	24
2.4.3. X–Ray diffraction (XRD).	24
2.4.4. Thermal analysis.	24
2.4.5. Scanning electron microscope (SEM).	25
2.4.6. Magnetic properties.	25
2.5. Radiotracers preparation.	25
2.6. Batch experiments.	25
2.6.1. Chemical stability.	25
2.6.2. Sorption procedures.	27
2.6.2.1. Effect of contact time.	27
2.6.2.2. Effect of pH.	27
2.6.2.3. Maximum sorption capacity.	29
2.6.2.4. Effect of sample mass.	30
2.6.2.5. Effect of ionic strength.	30
2.6.2.6. Ion exchange behavior.	30
2.6.2.7. Effect of initial concentration.	31
2.6.2.8. Effect of temperature.	31
2.6.2.9. Effect of competing cations.	31
2.6.3. Desorption procedures.	32
2.6.4. Regeneration procedures.	33

	Contents
2.7. Column experiments.	33
2.7.1. Individual system.	33
2.7.2. Binary system.	35
2.7.2. Binary system.	33
CHAPTER 3	
RESULTS AND DISCUSSION	
3. Results and discussion.	36
3.1. Characterization.	36
3.1.1. Surface area measurements.	36
3.1.2. FT–IR spectroscopy.	37
3.1.3. X–ray diffraction.	39
3.1.4. Thermal analysis.	41
3.1.5. Scanning electron microscope.	44
3.1.6. Magnetic properties.	47
3.2. Stability assessment.	52
3.3. Static studies.	61
3.3.1. Equilibrium study.	61
3.3.1.1. Equilibrium time.	61
3.3.1.2. Effect of pH.	64
3.3.1.3. Maximum sorption capacity.	66
3.3.1.4. Effect of sample mass.	68
3.3.1.5. Effect of ionic strength.	71
3.3.1.6. Ion exchange behavior.	73
3.3.1.7. Effect of initial concentration.	77
3.3.1.8. Effect of temperature.	79
3.3.1.9. Effect of competing cations.	81
3.3.2. Desorption study.	84
3.3.3. Recycling study.	87
3.4. Mathematical models.	94
3.4.1. Validation of kinetic and isotherm models.	95
3.4.1.1. Reduced Chi–square (Reduced χ^2).	96
3.4.1.2. Residual Sum of Squares Error (SSE).	96
3.4.1.3. Adjusted R–square (R ²).	96
3.4.1.4. Root mean square of the error (Root–MSE).	97

	Contents
3.4.2. Sorption kinetics.	97
3.4.2.1. Pseudo–first order model.	97
3.4.2.2. Pseudo-second order model.	102
3.4.2.3. Elovich model.	106
3.4.2.4. Intra-particle diffusion model.	109
3.4.3. Sorption isotherms.	114
3.4.3.1. Two–parameter isotherm models.	114
3.4.3.1.1. Langmuir model.	114
3.4.3.1.2. Freundlich model.	120
3.4.3.1.3. Dubinin-Radushkevich model.	124
3.4.3.1.4. Temkin model.	129
3.4.3.2. Three–parameter isotherm models.	134
3.4.3.2.1. Redlich–Peterson model.	134
3.4.3.2.2. Langmuir–Freundlich model.	141
3.4.3.2.3. Sips model.	147
3.4.3.2.4. Khan model.	153
3.4.3.3. Four–parameter isotherm models.	158
3.4.3.3.1. Marczewski–Jaroniec model.	158
3.4.3.3.2. Baudu model.	165
3.4.3.4. Five–parameter isotherm models.	171
3.4.3.4.1. Fritz–Schlunder model.	171
3.4.3.5. Final remarks on sorption isotherms.	178
3.4.4. Sorption thermodynamics.	181
3.5. Dynamic studies.	188
3.5.1. Individual system.	188
3.5.1.1. Eu(III) sorption.	188
3.5.1.2. Tb(III) sorption.	190
3.5.2. Binary system.	193
SUMMARY AND CONCLUSIONS.	199
REFERENCES.	209
ARABIC SUMMARY.	Í