OPTIMUM ENVIRONMENTAL SOLUTION FOR INDUSTRIAL WASTEWATER MANAGEMENT IN EGYPTIAN INDUSTRIAL ZONES

Submitted By Maysara Fouad Abd-Allah Ahmed

B.Sc. of Chemical Engineering, Higher Technological Institute, 10th of Ramadan City, 2004

A Thesis Submitted in Partial Fulfillment

of

The Requirement for the Master Degree

in

Environmental Sciences

Department of Environmental Engineering Sciences
Institute of Environmental Studies and Research
Ain Shams University

OPTIMUM ENVIRONMENTAL SOLUTION FOR INDUSTRIAL WASTEWATER MANAGEMENT IN EGYPTIAN INDUSTRIAL ZONES

Submitted By Maysara Fouad Abd-Allah Ahmed

B.Sc. of Chemical Engineering, Higher Technological Institute, 10th of Ramadan City, 2004

A Thesis Submitted in Partial Fulfillment
of the Requirement for the Master Degree
in Environmental Sciences

Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed El-Hosseiny Abd El-Rahman El-Nadi

Prof. of Sanitary & Environmental Engineering

Faculty of Engineering - Ain Shams University

2-Dr. Nahla Mohamed Badawy

Lecturer of Chemistry - Faculty of Engineering
Ain Shams University

APPROVAL SHEET OPTIMUM ENVIRONMENTAL SOLUTION FOR INDUSTRIAL WASTEWATER MANAGEMENT

IN EGYPTIAN INDUSTRIAL ZONES

Submitted By Maysara Fouad Abd-Allah Ahmed

B.Sc. of Chemical Engineering, Higher Technological Institute,

10th of Ramadan City, 2004

A Thesis Submitted in Partial Fulfillment
of the Requirement for the Master Degree
in Environmental Sciences
Department of Environmental Engineering Sciences
This Thesis Towards a Master Degree in Environmental
Sciences

Has been approved by:

Name Signature

1-Prof. Dr. Tarek Ismail Sabry

Prof. of Sanitary & Environmental Engineering Faculty of Engineering - Ain Shams University

2-Prof. Dr. Ghada Mohamed Basuony

Prof. of Chemistry - Faculty of Engineering Ain Shams University

3-Prof. Dr. Mohamed El-Hosseiny Abd El-Rahman El-Nadi

Prof. of Sanitary & Environmental Engineering Faculty of Engineering - Ain Shams University

بيني مِ ٱللَّهِ ٱلرَّحْمَنِ ٱلرَّحِيمِ

وَعَلَّمَ آدَمَ الْأَسْمَاءَ كُلَّهَا ثُمَّ عَرَضَهُمْ عَلَى الْمَلَائِكَةِ فَقَالَ أَنبِئُونِي بِأَسْمَاءِ هُؤُلَاءِ إِن كُنتُمْ صَادِقِينَ (٣١)

سورة البقرة

وَجَعَلْنَا مِنَ الْمَاءِ كُلَّ شَيْءٍ حَيٍّ (٣٠)

سورة الأنبياء

صدق الله العظيم

DEDICATION

This thesis work is dedicated to my beloved big family,

who have been a source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having them in my life.

This work is special dedicated to my Mother, my Father, my Sister, my Wife & my Son ADAM (My Sweet Heart) who have always loved me.

Finally, this piece of work is dedicated to the spirit of

Grandmother (Mama Hafsa), who never stopped sharing her wisdom,

tutelage, support and encouragement to me.

Mayasara Fouad Abd ALLA Ahmed

ACKNOWLEDGEMENTS

I express my sincere appreciation to those who have contributed to this thesis and supported me in one way or the other during 6 years for without any of them, this research work would not have been possible.

First and foremost, I wish to place on records my heartfelt and sincere thanks to my supervisor **Prof. Dr. Mohamed El-Hosseiny El-Nadi**, Prof. of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, for providing me an opportunity to complete my Master thesis. I appreciate his contributions of time and ideas to make my work productive and stimulating. His valuable suggestions, comments and guidance encourage me to learn more day by day. His deep insights helped me at various stages of my research. I am also indebted towards him for his generosity, selfless support and especially for the excellent example and patience that he has provided to me. Big thanks once again go to him for without him this work would have never seen the light as it is today.

I am extremely grateful to my joint supervisor, **Dr. Nahla Mohamed Badawy**, Assistant Prof. of Chemistry, Faculty of Engineering, Ain Shams University, for her comments and guidance.

I am also indebted to my colleague **Eng.** Nagwa Monsef, not only for all her help and useful suggestions but also for being there to listen when I needed an ear. I owe her a big thanks.

Mayasara Fouad Abd ALLA Ahmed

ABSTRACT

The industrial wastewater management in Egypt is one of the main goals for sustainable development. The water crisis in Egypt has led the industrial sector to search for resource efficiency and cleaner production technologies through a proper management of water, energy, and raw materials. As a result, the aim of this study is to choose the optimum environmental solution for industrial wastewater management in Egyptian industrial zones. Quesna industrial zone in Monofeya governorate was chosen as a case study where different scenarios for industrial wastewater management are proposed in this study to choose the optimum environmental solution. Industrial wastewater samples were taken from ten factories representing the ten main industrial sectors in the study area and sixteen parameters were measured in each sample. Results achieved from different applied scenarios showed variation in flow rates, industrial wastewater loads, treatment methods, removal efficiencies. capital and operation costs of the applied scenarios. Finally, these scenarios were compared technically and financially to determine the environmental solution for industrial wastewater management. This study could be applied for all industrial zones using the same methodologies as a first one to discuss the industrial wastewater management in Egypt.

Key words:

Industrial Wastewater Management, Quesna Industrial Zone, Industrial Sectors in Egypt, Industrial Wastewater Treatment, Optimum Environmental Solution, Removal Efficiency, Industrial Wastewater Load.

TABLE OF CONTENTS

Subject	Page
ABSRACT	I
TABLE OF CONTENTS	II
LIST OF TABLES	IX
LIST OF FIGURES	XIV
ABBREVIATION	XVI
1. INTRODUCTION	1
1.1. BACKGROUND	1
1.2. AIM OF STUDY	2
1.3. SCOPE OF STUDY	3
1.3.1. THEORETICAL WORK	3
1.3.2. PRACTICAL WORK	3
1.4. THESIS CONTENT	3
1.4.1. CHAPTER 1	4
1.4.2. CHAPTER 2	4
1.4.3. CHAPTER 3	4
1.4.4. CHAPTER 4	4
1.4.5. CHAPTER 5	4
1.4.6. CHAPTER 6	5

Subject	Page
2.REVIEW OF LITERATURE	7
2.1. INTRODUCTION	7
2.2. WASTEWATER MANAGEMENT	8
2.2.1. POLICIES AND REGULATIONS	10
2.2.1.1. The Policy Cycle	10
2.2.1.2. Legal Framework	11
2.2.1.3. General overview of the status of development and implementation of wastewater strategies/ action plans/ policies	12
A. INSTITUTIONAL FRAMEWORK	13
B. GOVERNANCE FOR WATER MANAGEMENT & SANITATION	15
B.1 Ministry of Water Resources and Irrigation	15
B.2 Ministry of State for Environmental Affairs/EEAA	16
B.3 Ministry of Water and Wastewater Utilities	17
B.4 Ministry of Health and Population	18
B.5 Other Ministries	19
C. STRATEGIES, POLICIES AND ACTION PLANS FOR WATER AND WASTEWATER MANAGEMENT	19
C.1 Strategies	20

Subject	Page	
C.2 Programs and Action Plans	21	
2.2.1.4. Progress and achievements	22	
2.2.2. METHODOLOGIES	26	
2.2.2.1. Collection of Industrial Wastewater	26	
2.2.2.2. Treatment of Industrial Wastewater	26	
2.2.2.3. Reuse or Recycle of Industrial Wastewater	32	
2.2.2.4. Industrial Sludge Treatment	33	
2.2.2.5. Disposal of Industrial Wastewater	34	
2.2.3. AVAILABLE MODELS	36	
2.2.4. APPLICATIONS	37	
2.2.4.1. World Experience	37	
2.2.4.2. Egyptian Experience	40	
2.2.4.2.1. The 10 th of Ramadan Industrial City	41	
2.2.4.2.2. The 6 th of October Industrial City	45	
3.MATERIALS AND METHOD	50	
3.1. STUDY AREA	50	
3.1.1. LOCATION, GEOGRAPHY AND HUMAN ACTIVITIES	50	
3.1.2. INDUSTRIAL ZONES IN AL-MONOFIYA	51	
3.1.3. INDUSTRIAL DRAINAGE	52	

Subject	Page
3.2. INDUSTRIAL ZONES IN QUESN	53
3.2.1. FIRST PHASE	55
3.2.2. SECOND PHASE	55
3.2.3. THIRD PHASE	55
3.2.4. FOURTH PHASE	56
3.2.5. QUESNA INDUSTRIAL SECTORS	56
3.3. APPLIED WW WORK PROCEDURES	57
3.3.1. PROCEDURE 1: EXISTING IWWTP	58
INSIDE THE COMPANY	
3.3.2. PROCEDURE 2: PRETREATMENT OF IWW INSIDE THE COMPANY	58
3.3.3. PROCEDURE 3: COLLECT THE IWW OUTSIDE THE COMPANY	59
3.3.4 .PROCEDURE 4:NO TREATMENT BEFORE DISCHARGING OUTSIDE THE	59
COMPANY	
3.4. PROPOSED SCENARIOS TO BE APPLIED	59
3.4.1. SCENARIO 1: DISCHARGE ALL SECTORS	
WITHOUT TREATMENT TO ONE CENTRALIZED IWWTP	62
3.4.2. SCENARIO 2: DISCHARGE ALL SECTORS AFTER PRETREATMENT INSIDE EACH	64
COMPANY TO ONE CENTRALIZED IWWTP	07

Subject	Page
3.4.3. SCENARIO 3: DISCHARGE SOME	
SECTORS AFTER MIXING TOGETHER	64
TO INDIVIDUAL TREATMENT UNIT	
3.4.4. SCENARIO 4: DISCHARGE THE IWW OF	64
THE SAME SECTOR TO A SPECIFIC IWWTP	
3.5. SAMPLING	68
3.6. MEASURING ANALYSIS	68
3.6.1. BOD (BIOLOGICAL OXYGEN DEMAND)	68
3.6.2. COD (CHEMICAL OXYGEN DEMAND)	69
3.6.3. pH VALUE	69
3.6.4. HEAVY METALS	70
3.6.5. TSS (TOTAL SUSPENDED SOLIDS)	70
3.6.6. TEMPERATURE	72
3.6.7. CHLORIDE	73
3.6.8. TDS (TOTAL DISSOLVED SOLIDS)	73
3.6.9. TOTAL NITROGEN AND TOTAL	73
PHOSPHORUS	
3.6.10. SULPHATES	74
3.6.11 NH ₃ (AMMONIA)	74
3.6.12 PHENOL	74

Subject	Page
3.6.13 OIL AND GREASE	74
3.6.14 THE NUMBER OF COLIFORM BACTERIA	75
4. RESULTS	78
4.1. EXISTING SITUATION	78
4.2. EXPECTED RESULTS FOR APPLYING THE PROPOSED SCENARIOS	86
4.2.1. SCENARIO (1)	86
4.2.2. SCENARIO (2)	92
4.2.3. SCENARIO (3)	98
4.2.4. SCENARIO (4)	108
5. DISCUSSION	132
5.1. EXISTING SITUATION	132
5.2. EXPECTED RESULTS AFTER APPLING THE PROPOSED SCENARIOS	133
5.2.1. SCENARIO (1)	133
5.2.2. SCENARIO (2)	137
5.2.3. SCENARIO (3)	141
5.2.4. SCENARIO (4)	145
5.3. TECHNICAL COMPARISION FOR APPLIED SCENARIOS	147

Subject	Page
5.4. FINANCIAL COMPARISION FOR APPLIED SCENARIOS:	149
5.5. TOTAL COMPARISION FOR APPLIED SCENARIOS	150
6. CONCLUSION	153
6.1. GENERAL	153
6.2. STUDY CONCLUSION	153
6.3. RECOMMENDATIONS	155
6.4. FURTHER WORKS	156
SUMMARY	158
REFERENCES	161
APPENDIXES	165
ARABIC ABSRACT& SUMMARY	1-3

LIST OF TABLES

Table		Page
Table (2/1)	Overview of the Water Sector and Sanitation in Egypt	23
Table (2/2)	New Industrial Zones which are owned by Polaris Park Company of 6 th of October City	42
Table (2/3)	Summary Facts	47
Table (3/1)	Specifications for Agricultural usage (Law 48/ 1982)	60
Table (3/2)	Specifications for cooling towers make- up (Soft Water)	61
Table (3/3)	Boiler feed water quality-Demi water	62
Table (4/1)	The ten main industrial sectors in Quesna industrial zone	79
Table (4/2)	The estimated existing industrial wastewater load and the maximum flow rate in each sector of Quesna industrial zone	82
Table (4/3)	The estimated existing industrial wastewater parameters max. concentration in each sector of Quesna industrial zone	85
Table (4/4)	The estimated industrial wastewater load and max. flow rate in Scenario 1	87