

Faculty of Science Physics Departent

Studies on Hydrogen Production Using Solar Photovoltaic Energy System

Thesis

In Partial Fulfillment for the Requirements of the degree of M.Sc.

Submitted to

Faculty of Science-Ain Shams University

By

Nour-Eldeen Mohammed Farag

(B.Sc., Physics-Chemistry, 2012)

Supervised by

Prof. Dr. Hesham Mohamed EL-Sayed

Physics Department, Faculty of Science Ain Shams University

Prof. Dr. Safi-Eldeen Mohamed Metwally

Renewable Energy Department
Desert research center

Prof. Dr. EssamTwafik El-Shenawy

Solar Energy Department National Research Center

2019

ACKNOWLEDGEMENT

First of all, I would like to express my humble thanks to Allah almighty, the favor owner for me in all my life steps. Without care and generosity of Allah, I could not reach to this stage.

My wife, I cannot find words that describe my gratitude and appreciation to my beloved wife. In all stages of stress and droop, she was the source of hope that helped me to continue and try again.

The biggest thanks are due to my father, my mother and all my family members for their support and encouragement during my various educational stages. I would like to thank them for helping me as much as they can.

I would like to thank my advisor **Prof. Hesham Mohamed El-sayed**, prof. of material science, Physics department, Faculty of Science, Ain Shams University. He was source of inspiration for both my research and my life. He has helped me considerably in the completion of this thesis and his effort is evident in every part of the thesis.

Great appreciation to **Prof. Safi El-deen Mohamed Metwally**, Prof. of water science, Desert Research Center; for his supervision, assistance, and his continuous encouragement to me especially in the pre-master stage.

I am indebted with great favor **Prof. Essam Twafiek El-Shenawy**, Prof. of Solar energy, National Research Centre for his extreme kindness, helping me throughout the phases of the work. He was as my old brother.

Lastly, Great thanks to my colleagues at Desert Research Center and to my colleagues at Faculty of Science, Ain Shams University. Great thanks to everyone helped me to complete this work.

Nour El-deen Mohamed

Index

Abstract			
Intr	oduction	4	
1	THEORITICAL BACKGROUND	8	
1.1	Solar-hydrogen energy systems in Egypt	8	
1.2	Solar Hydrogen Production Methods	10	
	 1.2.1 Hydrogen production via thermolysis	13 15 16	
13	Etching	23	
	1.3.1 Chemical Etching	26	
2	LITERATURE REVIEW	31	
3	EXPERIMENTAL WORK	41	
3.1	Objective of the work	41	
3.2	Experimental Work Description	41	
3.3	Experimental Setup	42	
	3.3.1 Photovoltaic module		
3.4	Measuring instruments	47	
3.5	Calculation of the efficiency	48	
3.6	Plasma Etching System	49	

4	RE	SULTS AND DISCUSSION	52
4.1	Optin	nization Stage	.52
	4.1.1	Effect of input voltage	52
		Effect of gap between electrodes	
		Effect of height of electrodes	
	4.1.4	Effect of cathode material	.56
		Effect of electrolyte concentration	
	4.1.6	The optimum operating conditions for the system	. 59
4.2	Syste	m Evaluation Stage	.59
4.3	Syste	m Enhancement Stage	. 66
	4.3.1	System evaluation stage when using the etched electrodes	70
4.4	Comp	parison between etched (at 700V, 150min.) and non-	
	e	etched electrodes	72
	4.4.1	Comparison between etched (at 700V, 150min.) and non-etche	
	4.4.2	electrodes according to the hydrogen production rate	ed
	4.4.2	electrodes according to the load current	
	4.4.3	Comparison between etched (at 700V, 150min.) and non-etche electrodes according to the electrolyzer efficiency	
	4.4.4	·	
	1. 1. 1	electrodes according to the overall system efficiency	
4.5	Discu	ssion of Results	.77
	4.5.1	Comparison between etched (at 700V, 150min.) and non-etche electrodes according to the surface area	
	4.5.2	Comparison between etched (at 700V, 150min.) and non-etche electrodes according to the electrical conductivity	ed
5	Cor	nclusion and recommendations	82
	Ref	erences	84
	Ara	bic Abstract	. 90

List of Figures

Figure	Description		
1-1	Monthly averages for the number of diffuse solar radiation	9	
1-2	The solar radiation intensity map for Egypt	10	
1-3	Solar hydrogen production methods	11	
1-4	PV-Water electrolysis system	18	
1-5	Alkaline water electrolysis system	20	
1-6	Proton exchange membrane electrolysis system	21	
1-7	Solid oxide electrolyte electrolysis system.	22	
1-8	Isotropic and Anisotropic Etching		
1-9	Chemical Etching		
1-10	Plasma Etching		
3-1	A schematic diagram for the photovoltaic-water electrolysis system		
3-2	The Photovoltaic module		
3-3	The water electrolyzer		
3-4	A schematic diagram for the plasma etching system		
3-5	The experimental plasma etching system 5		
3-6	Ar plasma around target electrode		
4-1	4-1 Effect of input voltage on HPR and electrical current		

4-2	Effect of gap between electrodes on HPR and electrical current		
4-3	Effect of electrodes height on HPR and electrical current		
4-4	Effect of cathode material on HPR and electrical current		
4-5	Effect of electrolyte concentration on HPR and electrical current		
4-6	Variation of solar radiation intensity with local time	61	
4-7	Variation of load current with local time	61	
4-8	Variation of load current with solar radiation intensity		
4-9	Variation of hydrogen production rate with local time		
4-10	Variation of hydrogen production rate with load current		
4-11	Variation of hydrogen production rate with solar radiation intensity		
4-12	Variation of electrolyzer efficiency, photovoltaic module efficiency and overall system efficiency with local time		
4-13	Variation of Ambient and PV module surface temperatures with local time	65	

4-14	variations of hydrogen production rate with time		
	of etching		
4-15	schematic diagram for Ar plasma etching process		
4-16	variation of the hydrogen production rate with		
4-10	local time	71	
4-17	variation of the load current with local time		
	Variation of electrolyzer efficiency, photovoltaic		
4-18	module efficiency and overall system efficiency	72	
	with local time		
	variation of the hydrogen production rate with		
4-19	local time for the etched and non-etched 73		
	electrodes		
4-20	variation of the load current with local time for	74	
4-20	the etched and non-etched electrodes	74	
4-21	variation of the electrolyzer efficiency with local		
4-21	time for the etched and non-etched electrodes	75	
	variation of the overall system efficiency with		
4-22	local time for the etched and non-etched		
	electrodes		
4-23	SEM of the non-etched electrode surface 7		
4-24	SEM of the etched electrode surface 7		
4-25	Laser Speckles image for the etched electrode	79	
4-23	surface	19	

4-26	Laser Speckles image for the non-etched	
4-20	electrode surface	
4-27	XRF image for the non-etched electrode surface	81
4-28	XRF image for the non-etched electrode surface	81

List of Tables

Table	Description	
3-1	Photovoltaic module characteristics	
4-1	Predicted Bores Size at the etched electrodes	69
4-2	mass percent for each element for etched and	
	non-etched electrodes	

List of Symbols and Abbreviations

Symbol	Meaning	Symbol	Meaning
AWE	Alkaline water electrolysis	$I_{\rm m}$	Module current
PEM	Proton exchange membrane	I_{L}	Load current
SOE	Solid oxide electrolysis	$V_{\rm L}$	Load voltage
PV	Photovoltaic	$V_{\rm m}$	Module voltage
HPR	Hydrogen production rate	Е	Calorific value of Hydrogen
PEC	photoelectrochemical cell	G	solar radiation intensity
TDS	Total Dissolved Solids	A	photovoltaic module area
КОН	Potassium hydroxide	η_{e}	Electrolyzer efficiency
NaOH	Sodium hydroxide	η_{m}	Photovoltaic module efficiency
SHES	Solar hydrogen energy system	η_t	Overall system efficiency
RF	radio frequency	Ar	Argon

Abstract

In this work, an alkaline water electrolyzer cell was designed and constructed to produce hydrogen gas using photovoltaic (PV) module as a source of electric power. The PV module is a monocrystalline silicon type with maximum output power of 8W. The electrolyzer cell is a rectangular container and is made from Acrylic material. Two electrodes are used as a cathode and anode, which are partially immersed in the alkaline solution.

The work was investigated through three stages: optimization, evaluation and enhancement stage. In the optimization stage, a wide range of operating conditions, which include input voltage, gap between electrodes, cathode material, and concentration of the electrolyte, were considered, and their effects on the hydrogen production rate were explored. The optimum operating conditions, which correspond to the maximum hydrogen production rate, were determined for the system.

In the evaluation stage, the performance of water electrolyzer cell was experimentally studied using the photovoltaic (PV) module. The process of water electrolysis using the photovoltaic (PV) module was operated during a sample day in the summer season from 8:00 AM until 4:00 PM.

Finally, the performance of the system was enhanced by electrode surface modification using plasma etching system. The surface structural, morphological and optical characteristics of the etched and non-etched electrodes are studied. X-ray fluorescence (XRF) analysis indicated that the electrical conductivity of the etched electrode is higher than of the non-etched electrode. Scanning electron microscope (SEM) and laser speckles images showed that the surface area of the etched electrode is increased compared to non-etched electrode due to the process of plasma etching.

INTRODUCTION

It has been obvious that one of the major problems of today's world is in its overdependence on fossil fuels. The fossil fuels resources in the world are finite and are going to be depleted at an ever-growing rate; According to estimates by the World Coal Institute; coal, natural gas and petroleum may run out in 130, 60 and 42 years, respectively, at the present rate of consumption (Wang, Roberts, Naterer, & Gabriel, 2012). Moreover, utilization of fossil fuels as an energy source is not environmental compatibility; the combustion of fossil fuels to obtain energy for transportation, power generation, serious etc. causes environmental problems such as air pollution, acid rains, ozone layer depletion, global warming and climate change.

Therefore, great efforts and deep researches have recently focused on inventing new energy resources. Renewable energy resources are attracting more attention as alternative energy sources. Solar energy is the most abundant, clean and inexhaustible of all the renewable energy resources. Nevertheless, solar energy cannot produce power steadily, since its power production rates vary with seasons, months, days, hours etc. This intermittent nature of solar energy is still one of the main issues of sustainable energy. To overcome the intermittency problem of solar energy, a storage medium or an energy carrier is required.