

Ain Shams University
Faculty of Women for Arts, Science and Education
Department of Biochemistry and Nutrition

Comparative Study on the Effect of Nano Curcumin Complexes as Antitumor in Mice

Thesis Submitted by

Radwa Wahid Mohamed Elnagar

(MSc in Biochemistry and Nutrition, 2014)
In partial fulfillment for
PhD degree in science
Biochemistry and Nutrition

Supervisors

Prof. Dr. Tahany El-Sayed Mohamed Kholief

Professor of Biochemistry, Biochemistry and Nutrition department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Prof. Dr. Gehan Salah El-Din Moram Aly

Professor of Nutrition, Biochemistry and Nutrition department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Prof. Dr. Abdelfattah Mohamed Mohsen Badawy

Professor of Applied organic Chemistry Egyptian Petroleum Research Institute

(2019)

سورة البقرة الآية: ٣٢

I'd like to sincerely thank almighty **Allah** for all his grants that he bestowed on me.

I truly acknowledge the valuable time, patience, support of my supervisory team. I'm deeply grateful **Prof. Dr. Tahani Elsayed Kholeif,** Professor of Biochemistry, Department of Biochemistry and Nutrition, Women's Faculty, Ain Shams University for her valuable supervision, great help, guidance and continuous encouragement.

I gratefully acknowledge the sincere advice, guidance and great support of **Prof. Dr. Gehan Salah El-Din Moram Aly**, Professor of Nutrition, Department of Biochemistry and Nutrition, Women's Faculty, Ain Shams University.

I acknowledge deeply **Prof. Dr. Abdelfattah Mohamed Mohsen Badawy**, Professor of Applied organic Chemistry, Department of Petrochemicals, Egyptian Petroleum Research Institute for his valuable supervision, great help, guidance and support in nanotechnology part of the study. Also, I'd like to deeply thank **Prof. Dr. Mohamad Fahmy Zaky**, Professor of Applied organic Chemistry, Department of Petrochemicals, Egyptian Petroleum Research Institute for his help and support in nanoparticles synthesis.

I truly acknowledge the great help and advice of **Prof.Dr. Kokab Abd El Aziz Ahmed,** professor of pathology, Department of pathology, faculty of veterinary medicine, Cairo University.

With great pleasure, I would like to express my sincere gratitude to the staff members of Biochemistry and Nutrition Department, Women's Faculty, Ain Shams University.

I'd like to present my sincere thankfulness to my deceased father and my dear mother, for their great role in my life and their numerous sacrifices for me. Many thanks for my brother Ahmed and sister Kholoud for their support.

Last but not least, I'd like to express my deepest gratitude to my husband, Ahmed Gouda, for his patience and tolerance over the study years. Thank you for being with me and for your appreciated sacrifices.

Contents

List of Abbreviations	i
List of Tables	V
List of Figures	viii
Abstract	XV
Introduction	1
Aim of the work	5
Review of literature	7
Materials and Methods	61
Results and Discussion	115
Summary	202
Conclusion	209
Recommendation	210
References	211
Arabic summary	

	List of Abbreviations
%ILS	The percentage of increased of life span
4-HNE	4-hydroxynonenal
AgNPs	Silver nanoparticles
ALP	Alkaline phosphatase
ALT	Alanine Aminotransferase
AP-1	Activator protein 1
Apaf-1	Apoptosis protease activating factor-1
AST	Aspartate Aminotransferase
ATCC	American Type Culture Collection
ATP	Adenosin triphosphate
BCC	Basal cell carcinoma
CA15-3	Carbohydrate Antigen 15-3
CAT	Catalase
Casp-3	Caspase-3
CML	Chronic myeloid leukemia
CNS	Central nervous system
COX2	cyclooxygenase-2
CRP	C-Reactive Protein
CuO-NCs	Copper oxide nanocomplexes
CuO-NPs	Copper oxide nanoparticles
Cur	Curcumin
Cur-Cu-NCs	Curcumin Capped Copper nanocomplexes
Cur-Cu-NPs	Curcumin capped copper nanoparticles
Cur-NCs	Curcumin Nanocomplex
DTNB	5, 5'-dithio-bis-2-(nitrobenzoic acid)
DEN	Diethyl nitrosamine
DHAA	Dehydroascorbic acid
DHC	Dihydrocurcumin
DLS	Dynamic Light Scattering

List of Abbrev.		
DRs	Death receptors	
EAC	Ehrlich Ascites Carcinoma	
EDTA	Ethylene Diamine Tetra Acetic acid	
EPR	Enhanced permeability and retention	
FADD	Fas-associated death domain	
FBS	Fetal bovine serum	
GAP	Glyceraldehyde 3-phosphate	
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase	
GLUT	Glucose transporter	
GSH	Reduced Glutathione	
GSSG	Glutathione disulfide	
НС	Healthy Control	
HCT	Hematocrit	
HepG2	Human liver carcinoma cell line	
ННС	Hexahydrocurcumin	
HO'	Hydroxyl radical	
HRP-	Horseradish peroxidase-Streptavidin	
Streptavidin		
HRTEM	High resolution transmission electron	
	microscopy	
HR-TEM	High resolution transmission electron microscopy	
HS	Hydrazine sulfate	
HS-Cu-NCs	Hydrazine sulphate-copper nanocomplexes	
HS-Cu-NPs	Hydrazine sulphate-copper nanoparticle	
IL-1R	Interleukin-1 receptor	
iNOS	Inducible nitric oxide synthase	
IOS	International Organization for	
	Standardization	
I.M.	Intramuscular	
I.P.	Intraperitoneal	

List of Abbreviations (Cont.)		
I.V.	Intravenous	
IL	Interleukin	
IT	Intratumoral	
MCF-7	Human breast carcinoma cell line	
MCH	Mean corpuscular hemoglobin	
MCHC	Mean corpuscular hemoglobin	
	concentration	
MCV	Mean corpuscular volume	
MDA	Malondialdehyde	
MDA-MB 231	breast cancer cells	
MES	2-(N-morpholino) ethanesulphonic acid	
MMP-9	matrix metalloproteinase-9	
MNP	Magnetic nanoparticles	
MSN	Mesoporous silica nanoparticles	
MST	Mean survival time	
MTW	Mean Tumor Weight	
NaBH ₄	Sodium Borohydride	
NAC	N-acetyl-cysteine	
NAD	Nicotinamide adenine dinucleotide	
Nano-Cur	Nano curcumin	
Nano-Cur-NCs	Nano-Curcumin nanocomplexes	
Native-Cur	Native curcumin	
Native-Cur-Cs	Native Curcumin complexes	
NCI	National Cancer Institute	
NCs	Nanocomplexes	
NF- kB	Nuclear factor kappa-light-chain-	
	enhancer of activated B cells	
NPs	Nanoparticles	
O_2^-	Superoxide anion	

List of Abbreviations (Cont.)		
O-native-Cur-Cs	Oral native Curcumin complexes	
PARP	Poly ADP-ribose polymerase	
PBS	Phosphate buffered saline	
PEG	Polyethylene glycol	
PKM2	pyruvate kinase M2	
PT	Permeability transition	
PTI	Post Tumor Inoculation	
RNS	Reactive nitrogen species	
ROS	Reactive oxygen species	
SAC	Streptavidin Conjugate	
SPSS	Statistical Package for Social Science	
SRB	Sulphorhodamine-B	
STAT3	Signal transducer and activator of	
	transcription 3	
T/G %:	Tumor growth inhibition ratio	
TBM	Tumor bearing mice	
TGF-β1	Transforming growth factor beta 1	
THC	Tetrahydrocurcumin	
TLR	Toll-like receptors	
TBA	Thiobarbituric Acid	
TMB	Tetramethylbenzidine	
TME	Tumor micro environment	
TNB	5-thio-2-nitrobenzoic acid	
TNF	Tumor necrosis factor	
TR-HIF1α	Target of rapamycin- hypoxia-	
	inducible factor 1α	

List of tables

T 11		
Table No.	Title	Page
(1)	The composition of the commercial pellet diet (g/Kg diet), NRC (1995)	62
(1-a)	Composition of the vitamin mixture (unit/Kg diet)	63
(1-b)	Composition of the mineral mixture (mg/Kg diet), NRC (1995)	63
(2)	Primer sequences for GAPDH and P53 mouse (cDNAs).	88
(3)	The surviving fraction of MCF-7 at different cocentrations of different nano-complexes	127
(4)	Results of lethal doses of CuO-NCs for determination of LD50 after interperitoneal injection in female mice (n=10)	129
(5)	Results of lethal doses of HS-Cu-NCs for determination of LD50 after interperitoneal injection in female mice (n=10)	130
(6)	Results of lethal doses of Cur-Cu-NCs for determination of LD50 after interperitoneal injection in female mice (n=10)	130
(7)	Results of lethal doses of Cur- NCs for determination of LD50 after interperitoneal injection in female mice (n=10)	130
(8)	Results of lethal doses of native Cur-Cs for determination of LD50 after interperitoneal injection in female mice (n=10)	131

List of tables (Cont.)

Table	Zist of tubies (cont.)	
No.	Title	Page
(9)	Effect of tested nanocomplexes on tumor weight (g) and tumor volume (mm ³) in different experimental groups	140
(10)	Effect of tested nanocomplexes on lifespan and tumor growth inhibition in TBM groups	141
(11)	The effect of tested nano-complexes on serum tumor markers; carbohydrate Antigen 15-3 (CA 15-3) and alkaline phosphatase (ALP) activity in different experimental groups	148
(12)	Effect of tested nanocomplexes on relative mRNA of P53 expression and caspase-3 activity in tumor tissues of different experimental groups	155
(13)	The effect of tested nano-complexes on serum inflammation/immunologic markers; C-reactive protein (CRP) and interleukin-6 (IL-6) in different experimental groups	161
(14)	The effect of tested nano-complexes on hemoglobin, hematocrit and red blood cells count in different experimental groups	168
(15)	The effect of tested nano-complexes on mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) in experimental groups	169

List of tables (Cont.)

Table No.	Title	Page
(16)	The effect of tested nano-complexes on platelets count (PLT), white bloob cells (WBCs) count and lymphocytes (Lym.) % in different experimental groups	170
(17)	The effect of tested nano-complexes on hepatic oxidative stress markers in different experimental groups.	181
(18)	The effect of tested nano-complexes on serum liver function tests in different experimental groups	188
(19)	The effect of tested nano-complexes on serum kidney function tests in experimental groups.	193

List of Figures

Figure	List of Figures	
Figure No.	Title	Page
(1)	Percentages of new cancer cases and cancer deaths in 2018	7
(2)	A single cell when it starts to grow abnormally	8
(3)	Carcinogenesis phases: initiation, promotion, progression, and metastasis	10
(4)	The major causes of cancer	11
(5)	Mechanism of cancer chemoprevention.	15
(6)	Outline of chemotherapy action on cancer cell	17
(7)	Classification of phytochemicals	23
(8)	Role of phytochemicals in human malignancies	25
(9)	Natural agents with Chemopreventive actions	29
(10)	Major phyto-constituents of tumeric extracts	31
(11)	A schematic of some actions of turmeric	35
(12)	The main molecular targets of curcumin in cancer cells	37
(13)	Prooxidant effect of vitamin C	40
(14)	Various approaches for making nanoparticles and cofactor dependent bioreduction	43

List of Figures (Cont.)

Eigeren	List of Figures (cont.)	
Figure No.	Title	Page
(15)	Schematic of physicochemical structure of nanoparticle platforms for drug delivery	44
(16)	Common routes of phytochemical administration from food and nano-carriers	46
(17)	Phytochemicals loaded to different types of nanocarriers	47
(18)	Advantages of using nanoparticles as drug delivery system for cancer therapy compared to free drug	48
(19)	Overview of the signaling cascades mediating nanotoxicity, and possible strategies to circumvent the toxicity	49
(20)	The effect of nanoparticle properties on systemic delivery to tumors	51
(21)	Angiogenesis process	52
(22)	Mechanisms of apoptosis and necrosis mediated by nanoparticles in tumor cells	54
(23)	A simplified diagram of anticancer activities triggered by nanoparticles in tumor cells	55
(24)	(A) Schematic representation of typical nanoparticle synthesis plan.(B) Tumor targeting strategy by nanoparticles.	56
(25)	Toxicity mechanism of CuO nanoparticles in eukaryotic cells	58
(26)	Gold nanoparticles capping by curcumin molecules	60

List of Figures (Cont.)

T	Zist of Figures (cont.)	
Figure No.	Title	Page
(27)	Transmission electron microscopy (TEM)	67
(28)	Dynamic light scattering (DLS)	67
(29)	Counting viable cells on a hemocytometer using Trypan blue dye	71
(30)	Schematic diagram of experimental groups	75
(31-a, b)	Continued schematic diagram of experimental groups.	76, 77
(32)	HR-TEM image of the prepared NPs	118
(33-A)	Dynamic light scattering (DLS) of the prepared CuO-NPs	120
(33-B)	Dynamic light scattering (DLS) of the prepared HS-Cu-NPs	120
(33-C)	Dynamic light scattering (DLS) of the prepared Cur-Cu-NPs	121
(33-D)	Dynamic light scattering (DLS) of the prepared Nano-Cur	121
(34)	The effect of tested nano-complexes on surviving fraction of MCH-7 cell line	128
(35)	Effect of tested nano-complexes on tumor cell apoptosis using Hoechst 33342 Staining	128
(36; a, b,	General observations observed after	132
c, d and		
e)	during LD50 determination.	

List of Figures (Cont.)

1	List of Figures (Cont.)	
Figure No.	Title	Page
(37; a, b, c and d)	Some toxicity symptoms observed in chemically treated groups.	134
(38-a)	Representative images illustrating solid tumor excised from TBM groups	142
(38-b)	The effect of Cur-NCs and Cur-Cu-NCs trearments on tumor growth inhibition	142
(39)	Effect of different nano-complexes on tumor weight (g) in TBM groups	143
(40)	Effect of different nano-complexes on tumor volume (mm ³) in TBM groups	143
(41)	Effect of tested nano-complexes on Tumor growth response (T/G %) in TBM groups	144
(42)	Effect of tested nano-complexes on increased life span % (ILS %) in different experimental groups	144
(43)	Effect of tested nano-complexes on seru CA 15-3 (ng/ml) in different experiment groups	149
(44)	Effect of tested nano-complexes on serum ALP (U/L) in different experimental groups	149
(45)	Effect of tested nano-complexes on relative mRNA of P53 expression in tumor tissues of different experimental groups.	156