

Role of Diffusion MRI in differentiation between Benign and Malignant Bone Tumors

Thesis

Submitted for Partial Fulfillment of MD degree in Radiodiagnosis

Submitted by Haidy Alaa Eldin Abd-Elmoneem El-Hadidy

M.B, B.CH. Ain Shams University

Supervised by

Prof. Dr. Ahmed Mostafa Mohamed

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Prof. Dr. Samer Malak Botros

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Osman

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Mostafa Mohamad,** Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Samer Malak Botros**, Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University, for his kind care, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Mohamed Osman,** Assistant Professor of Radiodiagnosis Faculty of
Medicine - Ain Shams University, for his great help, valuable
instructions, active participation and guidance.

I would also like to thank **General Dr. Moustafa El-Maghloob**, Head of radiology department in Al-Galaa
Military Hospitals for his continuous support and generosity
through this work.

All my love and appreciation to my family whom I owe my achievement & for their endless love and support.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction & Aim of the Work	1
Review of literature	
Pathology of Bone Tumors	4
 Magnetic Resonance Imaging of Bone Tumors 	18
Patients and Methods	53
Results	57
Illustrative Cases	66
Discussion	87
Summary and Conclusion	92
References	94
Arabic Summary	

List of Abbreviations

Abb.	Full term
ABC	Aneurysmal bone cyst
CMF	Chondromyxoid fibroma
ADC	Apparent diffusion coefficient
DWI	Diffusion weighted imaging
EPI	Echo Planar imaging
ES	Ewing sarcoma
FOV	Field of view
FS	Fat saturation
Gd	Gadolinium
Max	Maximum
Min	Minimum
MR	Magnetic resonance.
MRI	Magnetic resonance imaging
NOF	Non-ossifying fibroma
OS	Osteosarcoma
ROI	Region of interest
SBC	Simple bone cyst
SD	Slandered deviation
SE	Spin echo
SI	Signal intensity
STIR	Short tau inversion recovery.
T	Tesla
T1	Inversion time
T1WI	T1 weighted imaging
T2WI	T2 weighted imaging
TE	Echo time
TR	Time of repetition
TSE	Turbo spin echo

List of Tables

Table No.	Title	Page No.
Table (1):	WHO classification of soft tissue and tumors	
Table (2):	Shows bone lesion morphology corwith patient age	
Table (3):	Tumors location	33
Table (4):	Demographic data distribution of the group gender & age	-
Table (5):	Site of distribution of the lesions study group.	
Table (6):	Pathology distribution of the study gro	oup58
Table (7):	Enhancement pattern distribution study group.	
Table (8):	Diffusion weighted imaging distribute the study group.	tion of
Table (9):	Comparison between malignant and lesions according to demographic data	benign
Table (10):	Comparison between malignant and lesions according to enhancement patt	•
Table (11):	Comparison between malignant and lesions according to diffusion we imaging.	eighted
Table (12):	List of the bone tumors and mean values.	
Table (13):	Receiver-operating characteristic curve for prediction of lesions using value and diffusion weighted imaging.	g ADC

List of Figures

Fig. (1): Systematic approach for bony lesions types
(epiphyseal, metaphyseal, diaphyseal) and according to age
Fig. (5): Narrow zone of transition
8 . 7
Fig. (6): Wide zone of transition indicates malignancy or infection or eosinophilic granuloma
Fig. (7): Types of periosteal reaction
Fig. (8): Benign periosteal reaction in an osteoid osteoma
Fig. (9): Aggressive periosteal reaction
Fig. (10): Enchondroma, the most commonly encountered lesion of the phalanges
Fig. (11): Trabecular ossification pattern in osteoid osteoma10
Fig. (12): Polyostotic Fibrous Dysplasia
Fig. (13): ABC of the left femur
Fig. (14): Osteosarcoma in left femur of an 11-year-old boy24
Fig. (15): Ewing sarcoma in a 10-year-old boy
Fig. (16): Examples of skip lesions and medullary hyperplasia20
Fig. (17): Gadolinium-based contrast medium-enhanced T1Waxial image osteosarcoma of the right fibula invading the adjacent soft tissues including the vasculature
Fig. (18): The different types of MRI enhancement time-intensity curves after gadolinium injection
Fig. (19): Chondroblastoma of the distal femur
Fig. (20): Giant cell tumor of the proximal femur in a 36-year-old patient
Fig. (21): Femoral lesion showing high signal in T2FS WI

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (22):	Aneurysmal bone cyst	37
Fig. (23):	(A) Typical calcifications in the chondroid ma enchondroma. (B) Notice how easily MRI deplesions	trix of an picts these
Fig. (24):	This patient had chronic lower thigh pain	39
Fig. (25):	Non-ossifying fibroma	40
Fig. (26):	X-Ray shows eccentric well-defined lytic lesi metaphysis of the proximal tibia in a young ch	
Fig. (27):	Bony protrusion arising from the cortex of s cortex is extended with sclerotic mass, MR shows a thin peripheral cartilage osteochondroma	imaging cap in
Fig. (28):	Osteosarcoma of the tibia	44
Fig. (29):	Osteoid osteoma	45
Fig. (30):	MRI sagittal post-gadolinium T1WI with fat sa	aturation46
Fig. (31):	13-year-old female with Ewing sarcoma	47
Fig. (32):	Fibrous dysplasia. A patient with polyostotic F	FD49
Fig. (33):	Lymphoma: 17-year-old male complaining of and pain of the left knee	_
Fig. (34):	A case of leukemia	52
Fig. (35):	Pie chart demonstrating gender & age distrithe study group	
Fig. (36):	Bar chart pathological distribution of lesion study group.	
Fig. (37):	Pie chart diffusion weighted imaging distribut study group.	
Fig. (38):	Bar chart between malignant and benign according to diffusion weighted imaging	
Fig. (39):	Receiver-operating characteristic (ROC) of prediction of lesions using ADC value and weighted imaging	diffusion

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (40):	Case 1	68
	Case 2	
_	Case 3	
Fig. (43):	Case 4	74
_	Case 5	
	Case 6	
	Case 7	
	Case 8	
	Case 9	
	Case 10	

INTRODUCTION & AIM OF THE WORK

Worldwide, cancer is the second cause of death following heart disease, accounting for 23% of all deaths. Primary malignancy of bone and joints is ranked as third leading cause of death in patient with cancer who is younger than 20 years (*Siegel et al., 2013*).

Improvement of treatment and outcome of bone tumors requires development of diagnostic tools that can help in differentiation between benign and malignant lesions in a noninvasive and reliable manner (*Wang et al.*, 2001).

Radiographs provide critical information regarding lesion location, margin, matrix mineralization, cortical involvement and adjacent periosteal reaction. MRI is the best modality for focal extent and local staging (*George et al.*, 2002).

Most bone tumors have classical radiographic appearances and they can be diagnosed and correlated with patient age and clinical data. MRI can detect non-mineralized tumor tissue, evaluate the local extent of a malignant process for the purpose of staging and assess bone tumor therapeutic responses. However, lesions of high T2 signal and low enhancement constitute diagnostic challenge in daily practice (*Pekcevik et al.*, 2014 & Hayashida et al., 2006).

In addition, a few benign and malignant tumors show atypical features and need further investigation. Some benign lesions in patients with known primary malignancies also constitute a diagnostic problem (Yakushiji et al., 2009).

MRI is the most sensitive imaging modality for detection of bony tumors. It is considered the gold standard for characterization of these lesions and can detect occult intramedullary lesions with negative bone scan (*Kaplan et al.*, 2001).

Diffusion-weighted magnetic resonance imaging (DWI) is a recent addition to the MR sequences conventionally employed. DWI provides qualitative and quantitative functional information concerning the microscopic movements of water at the cellular level (*Khoo et al.*, 2011).

Diffusion MRI measures the random movements of water molecules in the body (Brownian motion). Water molecule motion is assessed in vivo in the extracellular, intracellular, and transcellular compartments, as well as in the intravascular compartment (microcirculation-perfusion) (*Baur et al.*, 2000).

Restriction of water-molecule diffusion within biological tissues correlates negatively with tissue cellularity and membrane integrity (*Lang et al.*, 1998).

Restriction is greater in highly cellular tissues that have intact cell membrane and a small extracellular compartment.

Tumors differ regarding their cellular characteristics and the differences can serve to differentiate tumor types (*Costa et al.*, 2011 & Van Rijswijk et al., 2002).

The advantage of evaluating diffusion is the ability to probe the Apparent diffusion coefficients (ADC) cellularity of neoplasm, different ADC values corresponding to changes in restricted diffusion (*Pearce et al. 2012 & Jaramilo et al.*, 2010).

The purpose of this prospective study is to elucidate the ability of diffusion MRI in differentiation between benign & malignant bone tumors and to correlate diffusion patterns & ADC values of different lesions with their pathological nature.

Chapter 1

PATHOLOGY OF BONE TUMORS

Pathological and systematic approach of bone tumors:

Excluding lymphoma and myeloma, primary malignant bone tumors constitute to about 0.2% of all malignancies in adults and approximately 5% of childhood malignancies. Bone tumor classification is based on morphologic findings: cell type, matrix production, and architecture. An overlap may occur between the morphologic features of benign and malignant as well as non-neoplastic conditions. Many bone tumor entities in clinical setting such as age and anatomic site distribution show a striking consistency. The final diagnosis of bone tumors should be based on a synthesis of histopathologic findings, clinical presentation, and imaging characteristics (*Davies et al.*, 2009).

The two most important aspects in evaluating bone tumors are the tumor location and the patient age (**Fig. 1**). Knowledge of this information alone narrow the differential diagnosis without even looking at any images. The specific radiographic criteria should help to narrow the list and often leading to the single diagnosis correctly (*Limeme et al.*, 2015).

WHO classification of bone tumors is shown in table (1):

Table (1): WHO classification of soft tissue and bone tumors (*Kotb et al.*, *2014*).

CARTILAGE TUMOURS	HAEMATOPOIETIC TUMOURS	
	Plasma cell myeloma	
Osteochondroma	Malignant lymphoma, NOS	
Chondroma	GIANT CELL TUMOUR	
Enchondroma	Giant cell tumor	
Multiple chondromatosis	Malignancy in giant cell tumor	
Chondroblastoma	NOTOCHORDAL TUMOURS	
Chondromyxoid fibroma Central, primary, and secondary	Chordoma	
Peripheral	VASCULAR TUMOURS	
Dedifferentiated	Hemangioma	
Clear cell	Angiosarcoma	
	SMOOTH MUSCLE TUMOURS	
OSTEOGENIC TUMOURS	Leiomyoma	
OSTEOGENIC TUMOURS	Leiomyosarcoma	
Osteoid osteoma	LIPOGENIC TUMOURS	
Osteoblastoma	Lipoma	
Osteosarcoma	Liposarcoma	
Conventional	NEURAL TUMOURS	
Chondroblastic	Neurilemmoma	
Fibroblastic Osteoblastic	MISCELLANEOUS TUMOURS	
Telangiectatic		
Small cell		
Secondary	Adamantinoma	
Parosteal, Periosteal	Metastatic malignancy	
High grade surface		

FIBROGENIC TUMOURS	MISCELLANEOUS LESIONS
Desmoplastic fibroma	Aneurysmal bone cyst
Fibro sarcoma	Simple cyst
FIBROHISTIOCYTIC	Osteofibrous dysplasia
TUMOURS	Langerhans cell histiocytosis
Benign fibrous histiocytoma	Erdheim-Chester disease
Malignant fibrous histiocytoma	Chest wall hamartoma
EWING SARCOMA/PRIMITIVE	JOINT LESIONS
NEUROECTODERMAL TUMOUR	Synovial chondromatosis
Ewing sarcoma	Metastasis

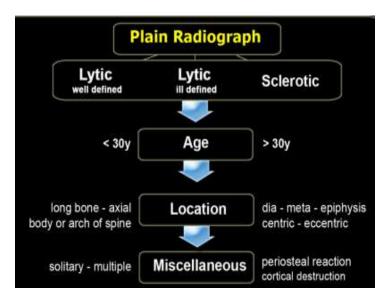


Fig. (1): Systematic approach for bony lesions types (*Henk & Robin*, 2010).

The approach to the radiographic diagnosis of bone tumors is done by analyzing the lesion in an organized method, with attention to several specific radiographic features: Tumor location, patient age, margins and zone of transition, periosteal