The role of MDCT and PET/CT in evaluation of adrenal masses

Essay

Submitted for partial fulfillment of Master degree in Radiodiagnosis

By

Nora Gamal Abd El Hafez El Khouly

M.B., B.Ch.

Faculty of Medicine Radiodiagnosis Department Ain Shams University

Supervised By

Prof.Dr. Fatma Salah El Deen

Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Radiodiagnosis Department Faculty of Medicine Ain Shams University 2012

Content

- 1-Introduction and aim of work.
- 2-Anatomy of adrenal gland:
 - A-Gross anatomy.
 - B- Radiological anatomy.
- 3- Pathology of the adrenal masses.
- 4- Technique of MDCT and PET/CT
- 5- Role of MDCT & PET/CT in assessment of adrenal masses with illustrative cases
- 6 Summary and conclusion.
- 7- References.
- 8- Arabic Summary.

دورالأشعة المقطعية متعددة المقاطع والتصوير المقطعى بالإصدار البوزيترونى مع الأشعة المقطعية في تقييم أورام الغدة الكظرية

رسالة مقدمة من الطبيبة/ نورا جمال عبد الحافظ الخولى توطئة للحصول على درجة الماجستير في الأشعة التشخيصية بكالوريوس الطب والجراحة كلية الطب

تحت اشراف الدكتورة/ فاطمة صلاح الدين

جامعة عين شمس

أستاذ الأشعة التشخيصية كلية الطب- جامعة عين شمس

الدكتور/ أمير لويس لوقا

مدرس الأشعة التشخيصية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2012

المحتوى

- 1. المقدمة والغرض من البحث.
 - 2. التشريح للغدة الكظرية.
- 3. باثولوجيا اورام الغدة الكظرية .
- 4. تقنية فحص الاشعة المقطعية المتعددة المقاطع و التصوير المقطعي
 بالإصدار البوزيتروني والاشعة المقطعية .
- 5. دور الاشعة المقطعية المتعددة المقاطع و التصوير المقطعى بالإصدار البوزيترونى والاشعة المقطعية فى تقييم أورام الغدة الكظرية مع عرض بعض الحالات التوضيحية.
 - 6. الملخص والاستنتاج.
 - 7. المراجع.
 - 8. الملخص العربي.

Acknowledgment

First and foremost, thanks to Allah, to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Fatma Salah EL Deen** for her sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special gratitude to **Dr. Amir Louis**, for his close supervision and continuous advice which gave me the best guide during different stages of this work.

I would like to express my deepest appreciation to my beloved mother $\mathcal L$ my brothers for their support $\mathcal L$ moral encouragement

Finally I owed to the soul of my father who is always with me throughout my life.

Nora Gamal

List of Contents

Title	Page
• Abbreviations	<i>i</i>
• List of figures	ii
• List of tables	iv
• Introduction and aim of the work	<i>v</i>
• Chapter 1: -Anatomy of adrenal glands	1
• Chapter 2:	
- Pathology of adrenal masses	13
• Chapter 3:	
- Technique of MDCT & PET/CT	34
• Chapter 4: - MDCT & PET/CT finding in adrenal m	asses 63
Summary and Conclusion	116
• References	120
Arabic Summary	

List of figures

Fig. no.	Title	Page
1	Normal adrenal gland	1
2	Relation of the right adrenal gland	2
3	Relation of the left adrenal gland	3
4	Blood supply of the adrenal glands.	8
5	Contrast enhanced CT of normal adrenal glands	10
6	Coronal CT scan normal adrenal glands	11
7	PET/CT physiological uptake in the adrenal glands	12
8	Adrenal cortical adenoma	16
9	Histologic features of an adrenal cortical adenoma.	17
10	Adrenal carcinoma.	18
11	Adrenal cortical carcinoma	19
12	Gross photograph of neuroblastoma	20
13	Microscopic appearance of neuroblastoma,	21
14	Gross ganglioneuroma	23
15	Ganglioneuromas	24
16	Pheochromocytoma	26
17	Pheochromocytoma	27
18	Myolipoma	28
19	Metastatic carcinoma	30
20	Diffuse hyperplasia of the adrenal	32
21	Right adrenal metastasis	42
22	Lipid-rich left adrenal adenoma	44
23	Annihilation reaction.	48
24	Metastatic lung cancer	58
25	Brown fat deposition	61
26	Physiologic muscle activity.	62

27	PET/CT and pet images metastasis	67
28	Collision tumors	68
29	Lipid-rich adenoma	71
30	Adrenal adenomas	72
31	Lipid-rich adenoma.	75
32	Lipid-poor adenoma.	76
33	Adrenocortical adenoma with hemorrhage	77
34	Benign left adrenal adenoma	78
35	Adrenal adenoma	80
36	Adrenocortical carcinoma.	82
37	Adrenocortical carcinoma	84
38	Primary adrenocortical carcinoma	85
39	Left adrenal carcinoma.	86
40	Adrenocortical carcinoma	87
41	Right adrenal neuroblastoma	90
42	Retroperitoneal ganglioneuroma	91
43	Pheochromocytoma	93
44	Pheochromocytoma with pathologically proved hemorrhage	94
45	Pheochromocytomas with a history of neurofibromas	94
46	Pheochromocytoma with rapid washout.	95
47	Pheochromocytoma with increased fdg uptake	96
48	Myelolipoma	98
49	Myelolipoma	98
50	Myelolipoma with a history of metastatic endometrial carcinoma.	99
51	Metastases	100
52	Adrenal metastases.	101
53	Adrenal metastasis	102
54	Metastatic renal cell carcinoma	102

55	Adrenal lung adenocarcinoma metastases	104
56	Metastatic disease.	105
57	Adrenal lymphoma	106
58	Lymphomatous adrenal gland involvement.	107
59	B-cell lymphoma	108
60	Right calcified adrenal pseudocyst	109
61	Bilateral adrenal hemorrhages	110
62	Endothelial cyst with hemorrhage	111
63	Adrenal hemorrhage	112
64	CT show dense calcification of both adrenal glands	114
65	Calcification of both adrenal glands	115

List of Tables

Table	Titles	Page
1	Neuroblastoma Staging	22
2	Percentage Washout Formulas	44

ANATOMY OF THE ADRENAL GLAND

Gross anatomy of the adrenal gland

The adrenal glands are complex endocrine organs named for their location (**Fig.1**), which is adjacent to the kidneys (thus the name, *ad-renal*). They are also occasionally referred to as suprarenal glands (*supra* means "above"). Located on the top of each kidney, they are orange and triangular. The normal gland weighs 5 g, encased in a connective tissue capsule and usually partially buried in an island of fat, the adrenal glands, like the kidneys, are *retroperitoneal*; that is, they lie beneath the peritoneum. (*Romans et al.,2011*).

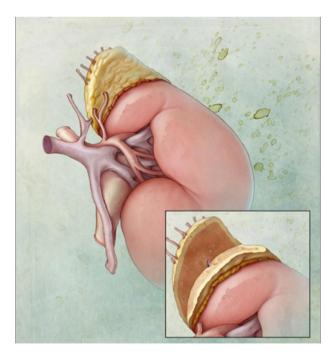


Fig. 1 Diagram shows the normal adrenal gland (Johnson et al., 2009)

The adrenal glands have an arrowhead configuration, with a body, medial and lateral limbs. The normal adrenals extend 2–4 cm in the cranio-caudal direction, and the thickness of the adrenal body and limbs does not exceed 9–10 mm and 4–5 mm, respectively (*Adam et al.*,2008)

Right Adrenal Gland

The right adrenal gland is located directly inferior to the medial portion of the right diaphragm and posteromedial to the liver (**Fig.2**). The lateral and inferior edges are closely opposed to the right kidney. The inferior vena cava is just medial to the kidney, and the right adrenal vein drains directly into the vena cava and measures approximately 6mm. (*Quinn et al.*, 2002)

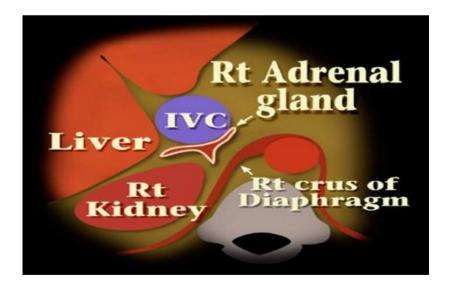


Fig.2 Diagram shows relation of the right adrenal gland (Shebel et al., 2012)

Left Adrenal Gland

The left adrenal gland is slightly thicker and larger than the right; it is primarily located at the supero-medial aspect of the kidney. It is closely opposed to and usually directly posterior to the tail of the pancreas, although its exact relationship to the pancreas can be somewhat variable. It lies just inferior to the diaphragm, and because of its medial location, it is often closely associated with the left crus. (**Fig.3**). The spleen is anterior and superior to the left adrenal gland, and the left kidney directly lateral. The aorta is just medial, and the renal vein and artery inferior. The left adrenal vein measures approximately 30mm and drains into the left renal vein. (*Sadler*, 2006)

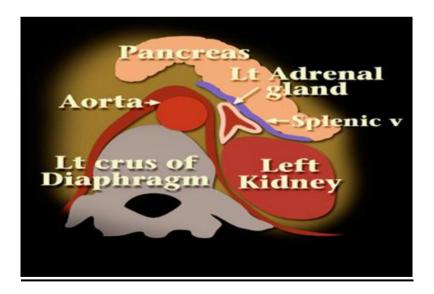


Fig.3 Diagram shows relation of the left adrenal gland (Shebel et al., 2012)

Variants:

Small masses of adrenal cortical tissue called cortical bodies are often found near the adrenal glands. These may become attached to other organs early in embryology and migrate with these organs to be found in such places as the broad ligament of the uterus, the spermatic cord and even the epididymis (*Ryan et al.*,2011).

Development:

Embryologically, the adrenals do not develop with the kidneys. They develop in the retro-peritoneum and descend, whereas the kidneys develop in the pelvis and ascend. In cases where the kidneys fail to ascend normally, the adrenal glands are still found in the expected position although their shape may be more discoid owing to lack of moulding by the kidneys during development (*Ryan et al.*, 2011).

The adrenal gland has an outer cortex derived from mesoderm and an inner medulla (10% of the weight of the gland) which is derived from the neural crest and is related to the sympathetic nervous system (*Ryan et al., 2011*).

At birth the adrenal glands are relatively much larger than in adult one third the kidney at birth and one thirtieth in the adult. (*Ryan* et al., 2011)

The cortex of each gland reduces in size immediately after birth and the medulla grows comparatively little. By the end of the second month the weight of the suprarenal has reduced by 50%. The glands begin to grow by the end of the second year and regain their weight at birth by puberty. There is little further weight increase in adult life (*Standring et al.*, 2008).

Adrenal cortex:

Three different zones or layers of cells make up the adrenal cortex. Starting with the outermost layer, their names are *zona glomerulosa*, *zona fasciculata*, and *zona reticularis*. Each region produces a different group or type of hormone. Chemically, all the cortical hormones are steroid. That is, molecularly, they all contain the four-ring structure of the sterol nucleus.

Mineralocorticoids are secreted by the outermost region of the adrenal cortex. As their name suggests, mineralocorticoids play an important part in regulating mineral salt (electrolyte) metabolism. The principal mineralocorticoid is *aldosterone*, which acts to conserve sodium ions and water in the body.

(Romans et al., 2011).

Glucocorticoids are secreted by the middle region of the adrenal cortex. Their main function is to affect the metabolism in diverse ways. They decrease inflammation and increase resistance to stress. The principal glucocorticoid is *cortisol*. (*Romans et al.*, 2011).

The innermost zone of the adrenal cortex, the *zona reticularis*, secretes *gonadocorticoids*, or sex hormones. Male hormones (androgens) and female hormones (estrogens) are secreted in both sexes by the adrenal cortex, but their effect is usually masked by the hormones from the testes and ovaries. (*Romans et al.*,2011).

Adrenal medulla:

The adrenal medulla secretes two *catecholamines*, about 80% epinephrine and the 20% norepinephrine. These hormones affect smooth muscle, cardiac muscle, and glands the same way that sympathetic stimulation does; they serve to increase and prolong sympathetic effects. (*Romans et al.*,2011).