

OPTIMUM DESIGN OF MULTIPLE ACCESS POINTS VISIBLE LIGHT COMMUNICATION SYSTEMS

By

Mai Badawi Sayed Ali Kafafy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

Electronics and Communications Engineering

OPTIMUM DESIGN OF MULTIPLE ACCESS POINTS VISIBLE LIGHT COMMUNICATION SYSTEMS

By Mai Badawi Sayed Ali Kafafy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Under the Supervision of

Professor of Communications
Electronics and Communications Engineering
Department
Faculty of Engineering, Cairo University
oud Mohamed Abdallah

Associate Professor of Communications Electronics and Communications Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

OPTIMUM DESIGN OF MULTIPLE ACCESS POINTS VISIBLE LIGHT COMMUNICATION SYSTEMS

By Mai Badawi Sayed Ali Kafafy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Approved by the Examining Committee

Professor at Faculty of Engineering, Alexandria University

Prof. Dr. Mohamed Mohamed Khairy, Thesis Main Advisor

Prof. Dr. Yasmine Aly Hassan Fahmy, Advisor

Prof. Dr. Magdy Mohamed Said El-Soudani, Internal Examiner

Prof. Dr. Said El-Sayed Ismail El-Khamy, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 Engineer's Name: Mai Badawi Sayed Ali Kafafy

Date of Birth: 3/1/1990 **Nationality:** Egyptian

E-mail: mai.b.s.ali@eng.cu.edu.eg

Phone: +201003813924

Address: 81 El-Gharib st. Mit Akaba, Al Agouzah

Registration Date: 1/10/2015 **Awarding Date:**/2019

Degree: Doctor of Philosophy

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Mohamed Mohamed Khairy Prof. Dr. Yasmine Aly Hassan Fahmy

Prof. Dr. Mohamed Mahmoud Mohamed Abdallah

Examiners:

Porf. Dr. Mohamed Mohamed Khairy (Thesis main advisor)

Porf. Dr. Yasmine Aly Hassan Fahmy (Advisor)

Prof. Dr. Magdy Mohamed Said El-Soudani (Internal examiner)
Prof. Dr. Said El-Sayed Ismail El-Khamy (External examiner)

(Professor at Faculty of Engineering - Alexandria University)

Title of Thesis:

Optimum Design of Multiple Access Points Visible Light Communication Systems

Key Words:

Visible Light Communication; Illumination; System Design, Power Consumption, Multiple Access

Summary:

This thesis answers a number of crucial questions on designing multi-user indoor visible light communication systems with multiple access points. These questions include the effect of the multiple access, illumination conditions, and room occupancy on the performance of visible light communication systems and its power consumption. The thesis formulates and statistically characterizes the power consumed by orthogonal and non-orthogonal multiple access techniques to support multi-users with specific quality of service. It also derives formulas to decide which lamps should support visible light communication in buildings that use their already existing lighting infrastructure. It also provides a methodology to jointly optimize the design of visible light communication alongside illumination. This joint design is suitable for buildings whose lighting is yet to be designed or renovated. All the design depend on information that is readily available to the system designer. The thesis also proposes a resource allocation algorithm to maximize the power efficiency of systems that allow hybrid visible light and radio frequency communications.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Mai Badawi Sayed Ali Kafafy	Date:
Signature:	

Acknowledgements

I would like to thank my advisors, Prof. Mohamed Khairy, Prof. Yasmine Fahmy, and Dr. Mohamed Abdallah for supporting and helping me to accomplish this work. I would also like to thank my professors and colleagues in the EECE department for their support and cooperation. Special thanks to my family for standing by my side all the time.

Table of Contents

וע	sciain	ier	1
Ac	know	ledgements	ii
Ta	ble of	Contents	iii
Li	st of T	Tables	vi
Li	st of I	ligures	vii
Li	st of A	Abbreviations and Symbols	X
Ał	strac	t	xiv
1	Intro	oduction	1
	1.1	Visible Light Communication	1
	1.2	Thesis Contribution	3
	1.3	Thesis Organization	5
2	Lite	rature Review	6
	2.1	VLC modulation techniques	6
		2.1.1 Intensity modulation/ Direct detection	6
		2.1.1.1 Single Carrier Modulation	7
		2.1.1.2 Multi-Carrier Modulation	8
		2.1.2 Color Modulation	9
		2.1.3 Intensity and Color Modulation	11
		2.1.4 Dimming schemes	12
	2.2	VLC multiple access techniques	14
		2.2.1 Frequency Division	14
		2.2.2 Interleave Division	14
		2.2.3 Code Division	15
		2.2.4 Spatial Division	15
		2.2.5 Wavelength and Color Division	16
		2.2.6 Power Division	17
	2.3	MIMO Techniques	19
	2.4	Interference Mitigation	21
	2.5	Designing VLC systems	23
	2.6	VLC Experiments and Commercial Products	24
		2.6.1 Experimental Rates	25
		2.6.2 Commercial Rates	25
	2.7	Hybrid VLC/RF systems	25
	2.8	Power Efficiency	27

3	Syst	tem Model	29
	3.1		29
	3.2	=	30
		-	30
		3.2.2 A Three-dimensional Room Model	31
	3.3	Users Positions	32
	3.4		32
	3.5		33
4	Min	nimizing VLC Power Consumption for NOMA and OMA Techniques	35
	4.1	Non Orthogonal Multiple Access (NOMA)	35
	4.2	Orthogonal Multiple Access (OMA)	36
	4.3		36
	4.4		40
		4.4.1 System Model	41
		4.4.2 PDF of NOMA VLC power consumption	43
		4.4.3 PDF of OMA VLC power consumption	44
		4.4.4 Simulation Results	45
		4.4.4.1 NOMA	45
		4.4.4.2 OMA	49
	4.5	Summary and Conclusions	51
5	Opt	timizing the Inter-distance between Transmitter in Multi-VAP Systems	52
	5.1	The Average Rate per User	52
		5.1.1 Water-filling based Power Allocation Technique (WFPA)	54
		5.1.2 Max-Min Rate based Power Allocation Technique (MMRPA)	56
	5.2	Numerical results	57
	5.3	Summary and Conclusions	63
6	Desi	igning Multi-VAP Systems under Illumination and Communication Con-	
	stra		64
	6.1	Two-dimensional Narrow Corridors	64
		6.1.1 Formulation of the Multi-VAP System Design	65
		6.1.2 Effect of Design Parameters on Illumination Constraints	66
			00
			67
		6.1.2.1 Illumination Consistency Ratio	
		6.1.2.1 Illumination Consistency Ratio	67
		6.1.2.1 Illumination Consistency Ratio	67 69
		6.1.2.1 Illumination Consistency Ratio	67 69 71
		6.1.2.1 Illumination Consistency Ratio 6.1.2.2 Average Illumination	67 69 71 71
	6.2	6.1.2.1 Illumination Consistency Ratio 6.1.2.2 Average Illumination	67 69 71 71 72
	6.2 6.3	6.1.2.1 Illumination Consistency Ratio 6.1.2.2 Average Illumination	67 69 71 71 72 75

7	Pow	rer Efficiency of Multi-VAP Hybrid RF/VLC Systems 94	
	7.1	Maximization of the system power efficiency	
	7.2	Joint Locally Optimal Bandwidth and Power Allocation Scheme 96	
		7.2.1 RF/VLC Power Allocation Subproblem	
		7.2.2 RF/VLC Bandwidth Allocation	
		7.2.3 Computational Complexity	
	7.3	Numerical Results	
	7.4	Summary and Conclusions	
8	Sum	nmary and Conclusions 107	
Re	feren	109	
Li	st of I	Publications 125	

List of Tables

3.1	Simulation	parameters .																												3	۷,
-----	------------	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

List of Figures

1.1	Optical wireless communications	2
2.1	Illustration of intensity modulation	7
2.2	Variations of pulse position modulation	8
2.3	color chormaticity diagram	10
2.4	Two sets with metatametrically equivalent points	11
2.5	VLC modulation techniques	12
2.6	Analog and digital dimming	12
2.7	Contour plot of the phase modulation in spatial light modulator	16
2.8	An 18 LED angle diversity transmitter	16
2.9	Orthogonal and non-orthogonal multiple access techniques	17
2.10	VLC multiple access techniques	18
2.11	VLC MIMO Techniques	19
2.12	Techniques for hybrid RF/VLC load balancing	27
3.1	VLC Tx-Rx link	29
3.2	Side view of a 2D corridor	31
3.3	The ceiling of an $L \times L$ room	31
4.1	Lamp locations on the ceiling	37
4.2	Illumination contours in the room (lux)	37
4.3	VAP setup	37
4.4	VLC power consumption Vs R_{min} (at $ U =8$ users)	38
4.5	VLC power consumption Vs $ U $ (at $R_{min} = 10$ Mbps)	39
4.6	Bit error rate	40
4.7	Statstical system model	41
4.8	PDF absolute difference versus number of VAPs $ \tilde{V} $ (at $ U =1$ and $R_{min}=25$	45
4.0	Mbps)	45
4.9	Scaled PDF of VLC power consumption per AP (at $ U =1$ and $R_{min}=25$	46
4 10	Mbps)	40
4.10	FDF absolute difference versus number of users $ U $ (R_{min} =23 Maps at $ \tilde{V} $ = 30)	47
4.11	PDF absolute difference versus minimum user rate R_{min} (at $ U =4 \tilde{V} =30$)	47
	Scaled PDFs of VLC power consumption per VAP (at $ \tilde{V} =30$)	48
	PDF absolute difference versus number of users $ U $ (R_{min} =25 Mbps at	
1.15	$ \tilde{V} = 30$)	49
4.14	PDF absolute difference versus minimum user rate R_{min} (at $ u =4$ $ \tilde{V} =30$).	49
	Scaled PDFs of VLC power consumption per VAP (at $ \tilde{V} =30$)	50
5.1	Example of an Indoor Setup	53
5.2	Optimal inter-VAP distance for different corridor dimensions (at $\lambda = \frac{2}{3}$	
	user/m, F=1)	58
5.3	Optimal number of VAPs for different corridor dimensions (at $\lambda = \frac{2}{3}$, $F=1$)	59
5.4	Average rate per user (at $L=19m$, $z=2.3m$, $F=1$)	60

5.5	Average, minimum, and maximum user rate (at $L=19$ m, $z=2.3$ m, $\lambda = \frac{2}{3}$, $F=1$)	60
5.6	Average rate per user (at $L=19\text{m}$, $z=2.3\text{m}$, $\lambda=\frac{2}{3}$)	61
5.7	Comparison of 2D corridor approximation with 3D corridors (at $L=19$ m,	
	$z=2.3$ m, $\lambda = \frac{2}{3}$, $F=1$)	62
5.8	Average rate per user for different lamp semi-angles at half intensity, $\theta_{\frac{1}{2}}$,	
	(at $L=19\text{m}$, $z=2.3\text{m}$, $\lambda = \frac{2}{3}$, $F=1$)	63
6.1	The interplay between the design parameters and the performance metrics	66
6.2	Minimum $\theta_{\frac{1}{2}}$ required for different illumination consistency ratios	68
6.3	Required number of LEDs per lamp for IL_{req} =500lx	70
6.4	Power consumption (at $IL_{req} = 5001x$)	72
6.5	The two objectives (at $D = \frac{L}{5}$ and $IL_{req} = 500 lx$)	73
6.6	Optimum $\theta_{\frac{1}{2}}$ for communication	75
6.7	The optimum semi-angle choice for $L=19\text{m}$, $D=L/5$, $IL_{req}=500 \text{ lx}$	77
6.8	The two objective plane for ICR_{req} =0.5 and IL_{req} =500 lx	78
6.9	The two objective plane for ICR_{req} =0.7 and IL_{req} =500 lx	79
6.10	Number of LEDs per lamp at different corridor widths (at $IL_{req} = 500 \text{ lux}$)	80
	Power consumption at different corridor widths (at $IL_{req} = 500 \text{ lux}$)	81
6.12	The two objectives at different corridor widths (at $IL_{req} = 500 \text{ lux}$, $D=L/5$)	82
6.13	Minimum to maximum illumination over 80% of the room	84
	Minimum to average illumination over 80% of the room	84
6.15	$IL_{(x,y)}/IL_{avg}$ (at $D=\frac{L}{7}$)	85
6.16	Minimum to average illumination (at $D = \frac{L}{7}$ m)	86
6.17	Total number of LEDs required for different illumination levels (at $D = \frac{L}{7}$ m)	86
6.18	Power consumption (at IL_{avg} =500 lx)	87
6.19	The ARU and total power consumption (at $D = \frac{L}{7}$ m)	87
6.20	ARU	88
6.21	ARU and IL_{min}/IL_{avg} (at $D = \frac{L}{7}$ m, $IL_{avg} = 500 \text{ lx}$)	88
	Two objectives	89
6.23	Average user rate for different illumination levels	91
6.24	Average user rate and its lower bound Vs user density (at $IL_{avg} = 500 \text{ lx}$	
	and $IL_{min}/IL_{avg} \ge 0.7$)	92
6.25	Percentage of active VAPs Vs the user density	92
7.1	A room with multi-VAPs and an RF AP	94
7.2	Flowchart of joint power and bandwidth allocation	96
7.3	Power efficiency versus the minimum required rate, R_{min} , (at $ U =8$ users) 1	02
7.4	Power Efficiency versus the number of users, $ U $, (at R_{min} =10 Mbps) 1	03
7.5	Ratio of VLC to hybrid rate versus the minimum required rate, R_{min} , (at $ U =8$ users)	03
7.6	Ratio of VLC to hybrid rate versus the number of users, $ U $, (at $R_{min}=10$.03
7.0	•	04
7.7	VLC system utilization versus the number of users, $ U $, (at R_{min} =10 Mbps) 1	
7.8	Power efficiency for different receiver field of view, FoV, (at R_{min} =5 Mbps	
	and $ U =8$ users)	05

7.9	Ratio of VLC to hybrid rate for different receiver field of view, FoV, (at
	R_{min} =5 Mbps and $ U $ =8 users)

List of Abbreviations and Symbols

List of Abbreviations

2D Two Dimension

3D Three Dimension

5G Fifth Generation

ACO-OFDM Asymmetrically Clipped Optical OFDM

AP Access Point

ARU Average Rate

BER Bit Error Rate

CAP Carierless Amplitude and Phase

CDMA Code Division Multiple Access

CSK Color Shift Keying

DCO-OFDM DC biased Optical OFDM

DFT Discrete Fourier Transform

DMT Discrete Multi Tone

FDMA Frequency Division Multiple Access

HCM Hadamard Coded Modulation

HetNet Heterogeneous Network

i.i.d independent and identically distributed

IDFT Inverse Discrete Fourier Transform

IDMA Interleave Division Multiple Access

IEEE Institute of Electrical and Electronics Engineers

IVD Inter-VAP Distance

IVI Inter-VAP Interference

LED Light Emitting Diode

LiFi Light Fidelity

LoS Line of Sight

LTE Long Term Evolution

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MMRPA Max-Min Rate based Power Allocation

NOMA Non Orthogonal Multiple Access

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OMA Orthogonal Multiple Access

OOK On Off Keying

PAM Pulse Amplitude Modulation

PAPR Peak to Average Power Ratio

PDF Power Density Function

PM-OFDM Position Modulating OFDM

PPM Pulse Position Modulation

PWM Pulse Width Modulation

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RF Radio Frequency

SC-FDMA Single Carrier FDMA

SDMA Space Division Multiple Access

SIC Successive Interference Cancellation

SINR Signal to Interference and Noise Ratio