PROPAGATION OF MORINGA OLEIFERA IN VITRO AND EFFECT OF LASER RADIATION ON GROWTH IN VIVO

By

Nada Atef Mohamed Zakaria Sarhan

B.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2009 M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2013

THESIS

Submitted in partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Ornamental Horticulture)

Department of Ornamental Horticulture Faculty of Agriculture Cairo University EGYPT

2019

Format Reviewer

Vice Dean of Graduate Studies

SUPERVISION SHEET

PROPAGATION OF MORINGA OLEIFERA IN VITRO AND EFFECT OF LASER RADIATION ON GROWTH IN VIVO

Ph.D. Thesis
In
Agricultural Sci. (Ornamental Horticulture)

By

NADA ATEF MOHAMED ZAKARIA SARHAN

B.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2009 M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., 2013

SUPERVISION COMMITTEE

Dr. AZZA MOHAMED SAED ARAFA
Professor of Ornamental Horticulture, Fac. Agric., Cairo University

Dr. MONA AHMED DARWISH
Professor of Ornamental Horticulture, Fac. Agric., Cairo University

Name of Candidate: Nada Atef Mohamed Zakaria Sarhan Degree: Ph.D.

Title of Thesis: Propagation of Maringa alaifara In Vitro and Effect of Laser

Title of Thesis: Propagation of *Moringa oleifera* In Vitro and Effect of Laser

Radiation on Growth In Vivo **Supervisors:** Dr.Azza Mohamed Saed Arafa

Dr.Mona Ahmed Darwish

Department: Ornamental Horticulture

Approval: / /

ABSTRACT

The present study was carried out at the Experimental Nursery of the Ornamental Horticulture Department, and Plant Tissue Culture Laboratory of Vegetable Crops Department, Faculty of Agriculture, Cairo University and , Cairo university, to study the micro propagation behavior and investigate the effect of helium neon laser radiation on stimulation of vegetative growth and anatomical structure of Moringa oleifera seeds by using different power levels (5, 10 and 15) with different time exposure (1, 3 and 5 min.). The results showed that the best survival rate of sterilized seeds was obtained when using 1.5% NaOCl with 30 min. soaking period, 1/2 MS-medium supplemented with 3 mM BA and 1 mM Kin treatment produced the highest number of shoots. The greatest rooting percentage was recorded on medium supplemented with 2.5NAA mM without adding IBA. The combination treatment between 0.5 mM IBA and 2.5 mM NAA achieved the largest number of roots. Treating the moringa seeds by He-Ne laser to 5min. time exposure led to the best results in number of branches and leaves for both seasons. 15mW at 3 min. gave the highest value of root length. Treatment that was not exposed to He Ne laser, produced the best shoot parameters (plant height, leaves fresh weight and stem diameter) which it might have benefit in dwarfing of moringa trees. Exposing Moringa oleifera seeds to He-Ne laser at 5 mW power in the first and second season resulted in significantly highest mean values in Chlorophyll a and total carbohydrates percentage. The maximum percentage of phosphorus and potassium were obtained when using 15 mW power of helium neon laser in two seasons. All He Ne laser treatments caused increment in leaf anatomical structure of moringa. The highest values of thickness of lamina, thickness of palisade tissue and thickness of spongy tissue were recorded by treated seeds with 15mw He-Ne laser power combined with 5 min. time exposure. Whereas Expose seeds to 5 mW laser power for 5 min. time exposure led to the highest value of thickness of midvein and midvein bundle (length width).

Key words: *Moringa oleifera*, In vitro, Laser radiation, Vegetative growth, Chemical composition, Anatomical structure.

DEDICATION

I dedicate this work to Whom my heart felt thanks, my dearest father and mother, my sisters, Noha and Nesma for their patience and help as well as to my friends Samah and Omnya for the support they lovely offered to me.

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Allah, my God, for protecting me and being with my family, enabling me to do this study and this work, and giving us the life we enjoy.

I Wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Azza Mohamed Saed Arafa** Professor of Ornamental Horticulture, Faculty of Agriculture, Cairo University for valuable guidance, continued assistance and generous support. I would also like to thank her for the time she freely gave me, the efforts that she made to follow up me along this work and for providing the facilities throughout the course of this work.

Sincere thanks to **Dr. Mona Ahmed Darwish** Professor of Ornamental Horticulture, Faculty of Agriculture, Cairo University for her sincere encouragement, supervision and helpful co operation.

Great thanks and appreciations are due to **Dr. Hasan** Ramadan Hasan Professor of Agricultural Botany, Faculty of Agriculture, Cairo University for his sincere support, and valuable help.

Deep gratitude is also extended to all staff members of National Institute of Laser Enhanced Science (NILES) Laboratory, Cairo University and to Ornamental Horticulture Department, Faculty of Agriculture, Cairo University.

LIST OF ABBREVIATIONS

BA : Benzyl adenine

IAA :Indole-3-acetic acid

IBA : Indole butyric acid

NAA :Naphthalene acetic acid

Kin: Kinetin

M : Molar

 μ **M** :1/1000 mM

μ**m** :Micrometer

min. :Minute

mM :1/1000 M

MS :Murashige and Skoog medium

PEG :Polyethylene glycol

TDZ: Thidiazuron

Var. :Variety

mW :Milliwatt

He-Ne :Helium - Neon laser

CONTENTS

INTI	RODUCTION
REV	IEW OF LITERATURE
1. In v	vitro propagation of Moringa oleifera
	Surface sterilization of explants
	Multiplication stage
c.	Root formation
2. The	e influence of He-Ne laser irradiation on
a.	Vegetative growth
b.	Chemical composition
	Anatomical structure
MAT	TERIALS AND METHODS
RES	ULTS AND DISCUSSION
1. Pro	opagation of <i>Moringa oleifera</i> in vitro
	Effect of different levels of NaOCl and different time of
	disinfectants
b.	Effect of different levels of Mercuric chloride (HgCl2)
	and different time of disinfectants
c.	Effect of different concentration of Kin. and BA on
	1. Shoot number
	2. Shoot length (cm)
d.	Effect of different concentration of IBA and NAA on
	1. Rooting percentage
	2. Root number
• 50	3. Root length
	fect of different levels of He-Ne laser radiation and
	posure time on vegetative growth characters of
	Oringa oleifera plants
а. b.	Plant height Branch number
о. с.	Leaf number
d.	
	Stem diameter
e.	Leaf fresh weight.
f.	Leaf dry weight
g.	Stem fresh weight

	h. Stem dry weight	
	i. Root length	
	j. Root fresh weight	
	k. Root dry weight	
3.	Effect of different levels of He-Ne laser radiation and	
•	Exposure time on chemical composition characters of	
	Moringa oleifera plants	
	a. Photosynthetic pigments	
	1. Chlorophylla	
	2. Chlorophyll b	
	3. Total chlorophyll	
	4. Carotenoids	
	b. Total carbohydrates percentage	
	c. Nitrogen percentage	
	d. Phosphorus percentage	
	e. Potassium percentage	
ŀ.	Effect of different levels of He-Ne laser radiation and	
	Exposure time on anatomical structure of Moringa	
	oleifera leaves	
	a. Thickness of lamina	
	b. Thickness of midvein	
	c. Thickness of palisade tissue	
	d. Thickness of spongy tissue	
	e. Dimensions of medvein bundle	
	f. Vessel diameter	
	UMMARY	
]	REFERENCES	
	RABIC SUMMARY	