PRODUCTION OF COMPOST FROM AGRICULTURAL CHITINIC WASTES FOR ORGANIC FARMING AND BIOLOGICAL CONTROL APPLICATIONS

By

BASSANT HASSAN MOHAMED FAHMY

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2008

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Cairo University
EGYPT

2019

Format Reviewer

Vice Dean of Post graduate studies

PRODUCTION OF COMPOST FROM AGRICULTURAL CHITINIC WASTES FOR ORGANIC FARMING AND BIOLOGICAL CONTROL APPLICATIONS

M.Sc. Thesis In Agric. Sci. (Agricultural Microbiology)

 $\mathbf{B}\mathbf{y}$

BASSANT HASSAN MOHAMED FAHMY

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2008

APPROVAL COMMITTEE

Dr. HATEM HUSSEIN YOYSSEIF ABO TALEB Head research of Microbiology, Agricultural Research Centre, Giza, Egypt.
Dr. MOHAMED ZAKRIA SEDIK
Professor of Agricultural Microbiology, Fac. Agric., Cairo University
Dr. NASR FAWZY NASR Associate Professor of Agricultural Microbiology, Fac. Agric., Cairo University
Dr. MOHAMED ABD EL-ALEEM ALI Professor of Agricultural Microbiology, Fac. Agric., Cairo University
Date: 2 / 6 /2019

SUPERVISION SHEET

PRODUCTION OF COMPOST FROM AGRICULTURAL CHITINIC WASTES FOR ORGANIC FARMING AND BIOLOGICAL CONTROL APPLICATIONS

Master Thesis
In
Agric. Sci. (Agri. Microbiology)

By

BASSANT HASSAN MOHAMED FAHMY

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2008

SUPERVISION COMMITTEE

Dr. MOHAMED ABD EL-ALEEM ALI

Professor of Agricultural Microbiology, Fac. Agri., Cairo University

Dr. NASR FAWZY NASR

Associate Professor of Agricultural Microbiology Fac. Agri., Cairo University

Dr. SHREEN SAMY AHMED

Senior Researcher of Soil, Water and Environmental Res. Inst., Agri., Res. Centre, Giza

DEDICATION

First of all, I would like to express my deepest thanks to ALLAH (God) for helping me to carry out and complete this work.

I dedicate this work to whom my heart felt my late mother thanks; to my husband, my brother and sister for their Patience, help and for all the support they lovely offered throughout the period of my post-graduation.

AKNOWLEDGEMENT

First of all thanks, from my deep heart I would like to express my thanks to ALLAH who made me able to accomplish this work and helped me, all persons and friends who helped me in any way making their ways always successful and fruitful.

I wish to express my deep thanks for **Dr. Mohamed Abd EL- Aleem**, Professor of Agricultural Microbiology, Faculty of Agriculture, Cairo University, for his great help and continuous encouragement in preparing this thesis.

Also, I wish to express my gratitude and appreciation to **Dr.**Nasr Fawzy Nasr, associate Professor of Agricultural Microbiology,

Faculty of Agriculture, Cairo University for his sincere guidance,

continuous encouragement and valuable advice during the course of

development of the thesis.

Also, I wish to express my deep thanks for **Dr. Shreen Samy**Ahmed, Senior Researcher of Soil, Water and Environmental Res.
Inst., Agri., Res. Centre, for her great help, continuous encouragement, guidance and enormous contribution in preparing this thesis.

Special deep appreciation is given to my late mother, my husband and my brother and sister and my best friend walaa.

Name of Candidate: Bassant Hassan Mohamed Fahmy Degree:

M.Sc

Title of Thesis: Production of Compost from Agricultural Chitinic Wastes

for Organic farming and Biological Control Applications

Supervisors: Dr. Mohamed Abd El-Aleem Ali,

Dr. Nasr fawzy Nasr, Dr. Shreen Samy Ahmed

Department: Agricultural Microbiology **Branch:**

Approval: 2 /6/2019

ABSTRACT

The aim of this study was to produce a valuable compost through recycling of agricultural (rice straw, banana peels, pomegranate peels) and chitinic waste (shrimp shell peel) All waste materials were mixed with cattle dung as a natural source of nitrogen and composed aerobically in a pile. Rock phosphate and feldspar were used as natural sources of P and K respectively. They were used in equal amounts (1:1) at a rate of 5% from the pile size. Fungal inoculant of Trichoderma harzianum and Phanerochaetec hrysosporium at ratio 1:1, were added to the pile at the rate of 5L per ton of the pile size, during the composting process, as a biodegradable agent.. The composting process was continued up to 12 weeks till maturation.. The physical and chemical analyses included temperature bulk density, moisture content, pH, EC, dry matter, organic matter, organic carbon, C/N ratio ,ash contents, ammoniacal-nitrogen (NH₄⁺-N), nitrate-nitrogen (NO₃⁻ N) and total N, P, K % were determined at zero time and after, 2 and 4 and 6, and 10 and 12, weeks of composting. Counts of mesophilic and thermophilic bacteria, fungi, actinomycetes and cellulose decomposers were also determined at the same intervals. Counts of total and fecal coliforms as well as Salmonella and Shigella were determined at the end of composting period.

The produced compost used with *Azotobacter chrococcum* as organic and bio-fertilizer for eggplants in a greenhouse experiment. The obtained results referred to a positive growth promoting effect of the compost product in addition to the bacterial inoculum on eggplant seedling. Compost application in addition to bacterial inoculation increased eggplant dry and fresh weight as well as improved the nutritional values of grain, *i.e.*, total carbohydrates, total phenol and total chlorophyll. In addition, soil organic matter was increased in pots received the combined treatment with compost and the bacterial inoculum. Slight changes were recorded in soil pH and EC as a result of organic or bio fertilizer application. The examined compost product from shrimp shells might be used with the bacterial inoculum as potential soil amendments in organic farming program.

Key words: Agricultural waste, chitinic waste, *Azotobacter chrococcum*, bio fertilizer, compost, organic fertilizer, eggplant

CONTENTS

	Pages
INTRODUCTION	1
REVIEW OF LETTETURES	3
1. The Composting process and characterization of	3
maturity	
a. Composting parameters and compost quality	3
1. C: N ratio	4
2.Organic Matter	7
3. pH	7
4. Nutrient Content of Compost	8
5. Microbial inoculation.	9
6. Temperature	10
7. Maturation stage	11
8. Electrical Conductivity (EC)	12
b. Stability/maturity of compost	12
c.Composting as an alternative method for waste	
management	13
1. Composting and agriculture wastes	13
2. Agrowastes a new source of value added products	20
3 .Effects of Fruits Waste Compost on chemical andbiological	21
characteristics of soil	
d. Bio-fertilizers and plant growth	25
MATERIALS AND METHODS	27
1. Materials	27
a. Agricultural Solid Waste	27
b. Natural Additives	27
c. Biologicalaccelerators	27
d.Bacterial inoculum	28
e. Soil Samples	28
f . Seeds	28
g. Media used	28
2. Experimental techniques	32
a. Composting process	32
3. Green house experiement	33
4. Microbiological determinations	34
5. Physical determination	35

a. Moisture	35
b. Temperature measurement	35
c. Bulk density	35
d . pH value	35
e. Electrical conductivity	36
f . Fresh and dry weights of plant material	36
6. Chemical Determinations	36
a. Determination of Cations and Anions	36
b. Determination of Metals	37
c. Organic matter	37
d. Total nitrogen	37
e. Ammoniacal and nitrate nitrogen	38
f. Total phosphorus	38
g. Total potassium	38
7. Biochemical analysis	38
a . Determination of total carbohydrates	38
b. Determination of Total phenolics	39
cDetermination of chlorophyll content	39
RESULTS AND DISCUSSION	41
1. Composting Characterization	41
2. Temperature during the composting process	41
3. Moisture during the composting process	43
4. pHvalue during the composting process	44
5 . EC during the composting process	45
6 . Bulk density during the composting process	46
7. Ash content during the composting process	46
8 . Content of organic matter, dry matter Organic carbon and C/N	47
ratioduring the composting process	
9 . Macronutrient content during the composting process	49
10. Contents of ammonium and nitrate during the composting	50
process	52
a. Total counts of mesophilic microorganisms	52 52
1. Bacteria	52 52
2.Fungi	52 52
3.Actinomycetes.	55 55
4. Cellulose decomposers	55