Role of Medical Thoracoscopy in Undiagnosed Exudative Pleural Effusion

Thesis submitted for partial fulfillment of M.D in Chest Diseases and Tuberculosis

By

Kirollos Khalaf Fahmy Kelada

Master degree in Chest Diseases - From Alexandria University

Under supervision of

Prof. Dr. Mohamed Ali Farag

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Haitham Salah Eldien

Lecturer of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Ehab Thabet Aziz

MD of Chest Diseases Consultant of Chest Diseases Abbasia Chest Hospital

Ain Shams University Faculty of Medicine

Acknowledgment

First of all, thanks Allah, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Mohamed Ali Farag**, Prof. of Chest Diseases, Faculty of Medicine, Ain Shams University, for his valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts he devoted in the supervision of this study.

I'll never forget, how co-operative was **Dr**. **Haitham Salah Eldien**, Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University, also he was encouraging all the time. It is honourable to be supervised by him.

I am greatly indebted to **Ehab Thabet Aziz**, Consultant of Chest Diseases, Abbasia Chest Hospital, for his continuous support to achieve an elaborate output.

I am thankful to all the staff and members of Chest Diseases Department, Faculty of Medicine, Ain Shams University for helping me to make this work.

	• •	
-	11	-

LIST OF CONTENTS

Chap	oter Page
ACK	NOWLEDGMENTi
LIST	OF CONTENTSii
LIST	OF TABLESiii
LIST	OF FIGURESv
LIST	OF ABBREVIATIONSvii
I.	INTRODUCTION1
II.	AIM OF THE WORK4
III.	REVIEW OF LITERATURE5
	The Pleura5
	Medical Thoracoscopy88
IV.	PATIENTS AND METHODS107
V.	RESULTS124
VI.	DISCUSSION151
VII.	SUMMARY173
VIII.	CONCLUSIONS178
IX.	REFERENCES180
	PROTOCOL
	ARABIC SUMMARY

LIST OF TABLES

Table		Page
Table (1)	Pathological basis of pleural effusion	. 38
Table (2)	Caueses of exudative pleural effusion	39
Table (3)	Light's criteria	40
Table (4)	Defining exudate based on pleural biochemistry alone	
Table (5)	Caueses of pleural effusion	43
Table (6)	Light's criteria for distinguishing transudative from exudative pleural fluid	43
Table (7)	Senstivity and specificty of tests to distinguish exudative from transdative effusiions	
Table (8)	Newer criteria for classification of exudates and transudates	45
Table (9)	Defintive diagnosis based on pleural fluid analysis	. 45
Table (10)	Pleural fluid tests	46
Table (11)	Common causes of pleural effusion	49
Table (12)	Exudative pleural fluid – differential diagnoses	51
Table (13)	Malignancies that cause pleural effusion	. 53
Table (14)	Differential diagnosis of cytology report	70
Table (15)	Shows the age, gender and occupation of the studied patients	124
Table (16)	Distribution of the studied cases according to respiratory symptoms	. 127
Table (17)	Distribution of the studied cases according to radiological findings	129

Table		Page
Table (18)	Descriptive analysis of the studied cases according to biochemical examination of pleural fluid	131
Table (19)	Demonstrates for the microscopic examination (cytological parameters) of the pleural fluid of the studied patients	132
Table (20)	Distribution of the studied cases according to intra thoracoscopic finding	134
Table (21)	Distribution of the studied cases according to histopathological examination	137
Table (22)	Distribution of the studied cases according to personal characteristics	139
Table (23)	Distribution of the studied cases according to chest x-ray findings	142
Table (24)	Distribution of the studied cases according to CT findings	144
Table (25)	Distribution of the studied cases according to biochemical examination of pleural fluid	145
Table (26)	Distribution of the studied cases according to cytological parameters	147
Table (27)	Distribution of the studied cases according to Intra thoracoscopic finding	148

LIST OF FIGURES

Figure		Page
Figure (1)	Anatomy of the pleura	10
Figure (2)	Anatomy of pleural cavity-pleural recesses	11
Figure (3)	Anatomy of the pleura cavity (muscles)	11
Figure (4)	Schema of the morphofunctional design of pleural space s.c.: systemic capillary; p.c.: pulmonary capillary	16
Figure (5)	a) Neergard's hypothesis. b) The present view of pleural fluid turnover, based on the available experimental database gathered with minimally invasive techniques in the rabbit	19
Figure (6)	Simple schema to depict the features of lymphatic control	27
Figure (7)	Overall functional arrangement of pleural flows	33
Figure (8)	Thoracocentesis needle insertion	41
Figure (9)	Approach to pleuarl effusions	61
Figure (10)	Chest x-ray showing moderate left sided pleural effusion	62
Figure (11)	Chest x-ray showing massive right sided pleural effusion	62
Figure (12)	Ultrasound Scan showing pleural effusion	64
Figure (13)	Ultrasound Scan showing pleural effusion	64
Figure (14)	Computed tomographic scan showing cavitating retrocardiac infiltrate (white arrow) with adjacent pleural effusion (black arrows).	66
Figure (15)	CT showing leftsided pleural effusion	67

Figure		Page
Figure (16)	CT showing rightsided pleural effusion with mass in right upper lobe	67
Figure (17)	MRI showing bilateral pleural effusion	68
Figure (18)	PET and CT showing bilateral pleural nodules	69
Figure (19)	Chest computed tomographic scan with a "split pleural sign" (arrow), seen in empyema	85
Figure (20)	Biopsy forceps sampling parietal pleura	92
Figure (21)	Talc pleurodesis on lung and parietal pleura	93
Figure (22)	Bulky metastasis on parietal pleura	94
Figure (23)	Examination for evidence of metastasis	95
Figure (24)	Pleural adhesions on medical thoracoscopy	97
Figure (25)	Insertion of semirigid pleuroscope through trocar.	100
Figure (26)	Patient positioning for medical thoracoscopy	102
Figure (27)	Trocar insertion for medical thoracoscopy	106
Figure (28)	Insertion of medical thoracoscopy through the trocar	106
Figure (29)	Shows the gender of the studied patients $(n = 45)$	125
Figure (30)	Shows the age of the studied patients $(n = 45)$	125
Figure (31)	Shows the occupation of the studied patients ($n = 45$)	126
Figure (32)	Distribution of the studied cases according to respiratory symptoms $(n = 45)$	127
Figure (33)	Distribution of the studied cases according to Side of pleural effusion $(n = 45)$	129
Figure (34)	Distribution of the studied cases according to Amount of pleural effusion $(n = 45)$	130
Figure (35)	Distribution of the studied cases according to CT Findings (n = 45)	130

Figure		Page
Figure (49)	Distribution of the studied cases according to Glucose (mg/dl) $(n = 45)$	146
Figure (50)	Distribution of the studied cases according to LDH (IU/L) ($n=45$)	146
Figure (51)	Distribution of the studied cases according to cytological parameters $(n=45)$	147
Figure (52)	Distribution of the studied cases according to Side of operation $(n = 45)$	149
Figure (53)	Distribution of the studied cases according to Amount of drained pleural fluid (L) $(n = 45)$	149
Figure (54)	Distribution of the studied cases according to Location of Lesion $(n = 45)$	150
Figure (55)	Distribution of the studied cases according to Lesions $(n = 45)$	150

LIST OF ABBREVIATIONS

ACCP : American college of chest physicians

ADA : Adenosine deaminase

AFB : Acid fast bacilli

ATS : American thoracic society

BAPE: Benign asbestos-related pleural effusion

BTS : British thoracic society

CA-125 : Cancer antigen-125

CA-153 : Cancer antigen-153

CABG : Coronary artery bypass graft

CBC : Complete blood culture

CD4 : Cluster of differentiation 4

CEA : Carcinoembryonic antigen

CHF : Congestive heart failure

ANA: : Anti nuclear antibody

CCF: : Congestive cardiac failure

CRP : C-reactive protein

CT : Computed tomography

CTPA : Computed tomography pulmonary angiography

CXR : Chest x-ray

DNA : De-oxy ribonucleic acid

ERS : European respiratory society

FDG : Fluorodeoxyglucose

FOB : Fibreoptic bronchoscopy

HCT : HaematocritHGB : Hemoglobin

HIV : Human immunodeficiency virus

IFN: Interferon

IGRA : Interferon-Gamma release assay

IU : International unitICU : Intensive care unit

IHC : ImmunohistochemistryLDH : Lactate dehydrogenase

LE cells : Lupus erythromatosis cells

MPM: Malignant pleural mesothelioma

M.L.N : Malignant lymphnodes

MT/P : Medical thoracoscopy/pleuroscopy

MPE : Malignant pleural effusion

MRI : Magnetic resonance imaging

PCR : Polymerase chain reaction

PE : Pleural effusion

PET : Positron emission tomography

PF : Pleural fluid

PS : Pleural space

P.C: Pulmonary capillary

RBC: Red blood cells

SLE : Systemic lupus erythematosis

S.C : Systemic capillary

TB : Tuberculosis

Tr mean : Trimmed mean

TREM-1: Triggering receptors expressed on myeloid cell-1

WBCS: White blood cells

VATS: Video-assisted thoracoscopic surgery

V/Q : Ventilation/perfusion

ZN : Ziehl - neelsen

INTRODUCTION

Pleural effusion is an abnormal collection of fluid in the pleural space resulting from excess fluid production, decreased absorption or both. It is the most common manifestation of pleural disease, with etiologies ranging from cardiopulmonary disorders to symptomatic inflammatory or malignant diseases requiring urgent evaluation and treatment (*Diaz-Guzman and Dweik*, 2007).

Diagnosis of a pleural effusions begin with the clinical history, medical examination, and chest radiography and is followed by thoracentesis when appropriate (*McGrath and Anderson*, 2011).

Recurrent and persistent pleural exudates are common in clinical practice, and in a large number of patients, thoracocentesis and blind pleural biopsy procedures do not provide a definitive diagnosis. The majority of these exudates are malignant. Thoracoscopy today remains the gold standard technique in providing diagnosis and management in these cases (*Noppen*, 2010).

Pleural effusion of unknown origin remains the commonest indication of thoracoscopy and is considered to be one of the techniques with the highest diagnostic yield in cytology negative exudative effusions with an efficacy almost comparable to video-assisted thoracoscopic surgery (VATS) (*Rahman et al.*, 2010).

Thoracoscopy is a minimally invasive procedure that allows visualization of the pleural space and intrathoracic structures. It enables the taking of pleural biopsies under direct vision, therapeutic drainage of effusions and pleurodesis in one sitting (*Lin et al.*, 2006).

Medical thoracoscopy should be considered in patients with undiagnosed pleural effusions, particularly those lymphocytic exudative effusions where TB and malignant pleural effusion are clinical possibilities and initial pleural fluid analysis is inconclusive (*Mootha et al.*, 2011).

In patients with suspected tuberculous pleurisy, thoracoscopic pleural biopsy under local anesthesia should be actively performed, because the technique has a high diagnostic rate, and can be easily and safely performed (*Sakuraba et al.*, 2006).

Diagnosis of pleural TB can be achieved in 99% of patients with thoracoscopy, which is higher than the 51% yield for closed pleural biopsy. Similarly, yield of thoracoscopic pleural biopsy is higher in patients with suspected pleural malignancy. A diagnosis could be achieved in 95% of patients as against 44% patients using closed pleural biopsy (*Loddenkemper et al.*, *1993*).

The semirigid thoracoscope achieves a diagnostic yield similar to that of the conventional rigid instrument despite the smaller biopsy size. Both instruments remain valuable in the evaluation and management of pleural disease (*Khan et al.*, 2012).

Medical thoracoscopy in the hands of experienced physicians is safe with mortality of 0.35% and likely to be less if diagnostic procedures alone are performed. Pain is frequently reported after the procedure and may be more common when using talc poudrage. Major complications (empyema, hemorrhage, port site tumor growth, bronchopleural fistula and/or persistent air leak, postoperative pneumothorax and pneumonia) occur in 1.8% and minor complications (subcutaneous emphysema, minor hemorrhage, operative skin site infection, fever, and atrial fibrillation) occur in 7.3% (*Rahman et al.*, 2010).