

Nano-sized Particles as New Radioisotopes Carriers for Medical Applications

A Thesis submitted

By

Basma Mohamed Said Essa

M. Sc. of Science (Chemistry), 2015 Assistant Lecturer at Radioactive Isotopes and Generators Department, Hot Labs. Center - Egyptian Atomic Energy Authority (EAEA)

For

The degree of PhD in science (Chemistry)

Supervised By

Prof. Dr. Maher Abd El-Aziz Mahmoud El-Hashash (D.Sc.)

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ahmed Abd El-Mohty Bayoumy

Professor of Radiochemistry, Hot Labs. Center, Egyptian Atomic Energy Authority

Assist. Prof. Dr. Tamer Mostafa Mohamed

Assistant Professor of Radiopharmaceutical chemistry,

Hot Labs. Center, Egyptian Atomic Energy Authority

To Chemistry Department Faculty of Science, Ain Shams University For Philosophy Doctor in Organic Chemistry 2019

Approval Sheet for submission Ph.D. Thesis

Name of candidate: Basma Mohamed Said Essa

Degree: Ph.D. in chemistry

Thesis title: Nano-sized Particles as New Radioisotopes Carriers for

Medical Applications

This thesis has been approved by:

1- Prof. Dr. Maher Abd El-Aziz Mahmoud El-Hashash (D.Sc.)

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

2- Prof. Dr. Ahmed Abd El-Mohty Bayoumy

Professor of Radiochemistry, Hot Labs. Center, Egyptian Atomic Energy Authority

4- Assist. Prof. Dr. Tamer Mostafa Mohamed

Assistant Professor of Radiopharmaceutical chemistry,

Hot Labs. Center, Egyptian Atomic Energy Authority

Approval

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry Department, Faculty of Science, Ain Shams University

Approval Sheet for submission Ph.D. Thesis

Name of candidate: Basma Mohamed Said Essa

Degree: Ph.D. in chemistry

Thesis title: Nano-sized Particles as New Radioisotopes Carriers for

Medical Applications

This thesis has been approved by:

1- Prof. Dr. Maher Abd El-Aziz Mahmoud El-Hashash (D.Sc.)

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

2- Prof. Dr. Ahmed Abd El-Mohty Bayoumy

Professor of Radiochemistry, Hot Labs. Center, Egyptian Atomic Energy Authority

3- Prof. Dr. Elsayed Husein Mostafa Eltamany

Professor of Organic Chemistry, Faculty of Science, Suez Canal University

4- Prof. Dr. Nahed Youssef Khair El-Din

Professor of Organic Chemistry, National Research Center

Approval

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry Department, Faculty of Science, Ain Shams University

ACKNOWLEDGEMENTS

In the name of **ALLAH**, the most merciful and almighty **WHO** gave me the courage, energy and patience to complete this study.

My first and foremost gratitude goes to my supervisor, **Professor Maher Abd El-Aziz Mahmoud El-Hashash**, Prof. of organic chemistry, Faculty of Science, Ain Shams University, for his honest and friendly guidance, his extremely useful ideas and endless professional support. Thank you very much for your valuable time and immeasurable patience.

I would like to express my deep gratitude to **Prof. Ahmed Abd El-Mohty Bayoumy**, Professor of radiochemistry, Radioisotopes and Generators Department, Hot Labs. Center, Egyptian Atomic Energy Authority, for available help, continuous advices and encouragements.

Very special thanks to my PhD supervisor **Assist. Prof. Dr. Tamer Mostafa Mohamed Sakr**, Assistant professor of radiopharmaceutical chemistry, Radioisotopes and Generators Department, Hot Labs. Center, Egyptian Atomic Energy Authority. All my deepest appreciation for the invaluable guidance and support to my professor. Actually this thesis would not have been possible without his continuous advice and constant support that provided over the course of my PhD research, for which I will remain forever grateful. His enthusiasm for the exploration of new ideas in scientific research has inspired me to constantly seek to become a better researcher.

I am sincerely thankful for **Dr. Adli AbdAllah Selim** Labeled Compounds Department, Hot Labs. Center, Egyptian Atomic Energy Authority- for his great help and unlimited support and encouragement.

Finally, I really would like to thank those who helped me even with a word of support, those who really affected and still affecting my life everywhere.

	Content	Page
List of ta	ables	I
List of fi	gures	II
List of a	bbreviations	VI
Aim of t	he work	1
Abstract	t e e e e e e e e e e e e e e e e e e e	2
Summar	'y	3
	1. INTRODUCTION	6
1.1.	Nanotechnology	6
1.1.1.	Applications of nanotechnology	6
1.1.1.1.	Medicine and healthcare	6
1.1.1.2.	Environment	7
1.1.1.3.	Energy	8
1.1.1.4.	Information and communication technologies	8
1.1.2.	Types of nanoparticles	8
1.1.2.1.	Carbon-based nanoparticles	10
1.1.2.2.	Ceramic nanoparticles	10
1.1.2.3.	Metal nanoparticles	11
1.1.2.4.	Semiconductor nanoparticles	11
1.1.2.5.	Polymeric nanoparticles	11
1.1.2.6.	Lipid-based nanoparticles	12

	Content	Page
1.1.3.	Gold nanoparticles: synthesis and applications	12
1.1.4.	Synthesis of AuNPs	13
1.1.4.1.	Gold nanospheres	14
1.1.4.2.	Gold nanorods	16
1.1.4.3.	Gold nanocages	17
1.1.4.4.	Gold nanoshells	17
1.1.5.	Applications of gold nanoparticles	17
1.1.5.1.	Electronic and opto-electronic applications	17
1.1.5.2.	Catalytic applications	18
1.1.5.3.	Decorative applications	18
1.1.5.4.	Contrast enhancement in electron and optical microscopy	18
1.1.5.5.	Pollutant removal	18
1.1.5.6.	Medical applications	19
1.1.5.6.1.	Drug delivery	19
1.1.5.6.2.	Hyperthermal therapy	20
1.1.5.6.3.	Radio-theranosis	20
1.1.5.6.4.	Biomedical diagnostics	21
1.2.	Radioactivity, radioisotopes and nuclear medicine	21
1.2.1.	Radioactivity	21
1.2.2.	Radioisotopes and nuclear medicine	22
1.2.2.1.	Characteristics of diagnostically radioisotopes	26

	Content	Page
1.2.2.2.	Characteristics of radioisotopes administered internally for therapeutic use	26
1.2.2.3.	Some radioisotopes that used for diagnostic nuclear medicine	27
1.2.3.	Technetium-99m	28
1.2.3.1.	Chemistry of technetium	28
1.2.3.2.	Labeling with technetium-99m	32
1.2.3.2.1.	Labeling methods with ^{99m} Tc	33
1.2.4.	Radiopharmaceuticals	35
1.3.	Nanotechnology and Cancer	43
1.3.1.	Advantages in using gold nanoparticles	45
1.3.1.1.	Size and shape tunability	45
1.3.1.2.	Biocompatibility	45
1.3.1.3.	Easy detection by using various analytical methods	47
1.3.1.3.1.	Ultraviolet-visible spectroscopy	47
1.3.1.3.2.	Transmission electron microscopy	48
1.3.1.4.	Easy surface modification	48
	2. RESULTS AND DISCUSSION	51
2.1.	Gallic gold nanoparticles (gallic-GNPs)	51
2.1.1.	Synthesis and characterization of gallic-GNPs	51
2.1.2.	In-vitro cytotoxicity study of gallic-GNPs	54
2.1.3.	Radiolabeling of gallic-GNPs	54

	Content	Page
2.1.3.1.	Effect of reducing agent amounts	55
2.1.3.2.	Effect of pH of the reaction mixture	56
2.1.3.3.	Effect of gallic-GNPs solution amount	57
2.1.3.4.	Effect of reaction time and in-vitro stability	58
2.1.4.	Recharacterization of gallic-GNPs	58
2.1.5.	Physiological in-vitro stability of gallic-GNPs	59
2.1.6.	Biodistribution studies of 99mTc-gallic-GNPs	59
2.1.7.	Conclusion	65
2.2.	Citrate gold nanoparticles (citrate-GNPs)	66
2.2.1.	Synthesis and characterization of citrate-GNPs	66
2.2.2.	In-vitro cytotoxicity study of citrate-GNPs	68
2.2.3.	Radiolabeling of citrate-GNPs	69
2.2.3.1.	Effect of reducing agent amounts	70
2.2.3.2.	Effect of pH of the reaction mixture	71
2.2.3.3.	Effect of citrate-GNPs solution amount	72
2.2.3.4.	Effect of reaction time and in-vitro stability	73
2.2.4.	Recharacterization of citrate-GNPs	73
2.2.5.	Physiological in-vitro stability of citrate-GNPs	74
2.2.6.	Biodistribution studies of 99mTc-citreate-GNPs	74
2.2.7.	Conclusion	79
	3. EXPERIMENTAL	80
3.1.	Chemicals	80

	Content	Page
3.2.	Equipments and tools	81
3.3.	Radioactive material	81
3.4.	Animals	82
3.5.	Methods	82
3.5.1.	Preparation of stock solution of SnCl ₂ .2H ₂ O	82
3.5.2.	Radiochemical determination	82
3.5.3.	Tumor induction in mice	84
3.5.4.	Gallic acid gold nanoparticles (gallic-GNPs)	84
3.5.4.1.	Synthesis and characterization of gold nanoparticles capped with gallic acid (gallic-GNPs)	85
3.5.4.2.	In-vitro cytotoxicity study of gallic-GNPs	85
3.5.4.3.	Labeling of gallic-GNPs with technetium-99m	85
3.5.4.4.	Physiological <i>in-vitro</i> stability study of gallic-GNPs	86
3.5.4.5.	Biodistribution studies of 99mTc-gallic-GNPs	86
3.5.5.	Citrate gold nanoparticles (citrate-GNPs)	87
3.5.5.1.	Synthesis and characterization of citrate gold nanoparticles (citrate-GNPs)	87
3.5.5.2	In-vitro cytotoxicity study of citrate-GNPs	88
3.5.5.3.	Complexation of citrate-GNPs with technetium-99m	88
3.5.5.4.	<i>In-vitro</i> stability study of citrate-GNPs in saline and serum	88
3.5.5.5.	Biodistribution studies of ^{99m} Tc-citrate-GNPs	88

Content	Page
REFERENCES	89
Arabic summary	Í

List of Tables

Table no.	Table title	Page
Table 1	Comparison of gold in bulk and gold in nanoparticles form	
		12
Table 2	Some radionuclide that used in nuclear medicine	22
Table 3	Some ^{99m} Tc-radiopharmaceuticals for imaging and	
	functional studies of organs	37
Table 4	Summary of selected cytotoxicity for gold	
	nanoparticles	46

List of Figures

Figure no.	Figure title	page
Figure 1	Nanoscale comparison of gold nanoparticle (GNPs) with other biological materials	9
Figure 2	Generation and decay of ^{99m} Tc and ⁹⁹ Tc	29
Figure 3	Typical radionuclide generator system	30
Figure 4	Plot of logarithm of ⁹⁹ Mo and ^{99m} Tc activities versus time showing transient equilibrium	31
Figure 5	The strategy for labeling of proteins with metal ions using bifunctional chelating agent	35
Figure 6	Passive versus active targeting	45
Figure 7	Absorption spectra obtained from the UV-Vis Spectroscopy for GNPs with different sizes	48
Figure 8	Some physicochemical properties of GNPs	49
Figure 9	The size distribution histogram of gallic-GNPs	52

Figure no.	Figure title	page
Figure 10	Zeta potential distribution of gallic-GNPs	53
Figure 11	TEM image of gallic-GNPs	53
Figure 12	Inhibitory cytotoxic activity against normal human lung fibroblast cells in different concentrations of gallic-GNPs	
		54
Figure 13	Radiochemical yield of ^{99m} Tc-gallic-GNPs as a function of reducing agent amount	55
Figure 14	Radiochemical yield of ^{99m} Tc-gallic-GNPs as a function of pH.	56
Figure 15	Radiochemical yield of ^{99m} Tc-gallic-GNPs as a function of substrate amount	57
Figure 16	Radiochemical yield of ^{99m} Tc-gallic-GNPs as a function of time	58
Figure 17	Stability of ^{99m} Tc-gallic-GNPs in human serum / saline at 37 °C followed in time	59

Figure no.	Figure title	page
Figure 18	Biodistribution of ^{99m} Tc-gallic-GNPs at different time intervals post injection in normal Albino mice	60
Figure 19	Biodistribution of ^{99m} Tc-gallic-GNPs at different time intervals post intravenous (I.V.) injection in solid tumor bearing Albino mice	62
Figure 20	T/NT ratio of ^{99m} Tc-gallic-GNPs at different time intervals post intravenous (I.V.) Injection in solid tumor bearing Albino mice	63
Figure 21	Biodistribution of ^{99m} Tc-gallic-GNPs at different time intervals post intra tumor (I.T.) injection in solid tumor bearing Albino mice	64
Figure 22	The size distribution histogram of citrate-GNPs	67
Figure 23	TEM image of citrate-GNPs	67
Figure 24	Zeta potential distribution of citrate-GNPs	68

Figure no.	Figure title	page
Figure 25	Inhibitory cytotoxic activity against normal human lung fibroblast cells in different concentrations of citrate-GNPs	69
Figure 26	Radiochemical yield of ^{99m} Tc-citrate-GNPs as a function of reducing agent amount	70
Figure 27	Radiochemical yield of ^{99m} Tc-citrate-GNPs as a function of pH	71
Figure 28	Radiochemical yield of ^{99m} Tc-citrate-GNPs as a function of substrate amount	72
Figure 29	Radiochemical yield of ^{99m} Tc-citrate-GNPs as a function of reaction time	73
Figure 30	Stability of ^{99m} Tc-citrate-GNPs in human serum / saline at 37 °C followed in time	74
Figure 31	Biodistribution of ^{99m} Tc-citrate-GNPs at different time intervals post injection in normal Albino mice	75