

Natural Polymer–Carbon Nanotube Composites Prepared by Gamma Radiation for the Removal of Some Radionuclides

A Thesis submitted

By

Islam Mohamed Abdelmonem Mohamed

M. Sc. of Science (Chemistry), 2015 Assistant Lecturer at Nuclear Chemistry Department, Hot Labs. Center - Egyptian Atomic Energy Authority (EAEA)

For

The degree of PhD in science (chemistry)

Supervised By

Prof. Abdel-Rahman Mahmoud Mousa

Professor of Polymers, Faculty of Science, Ain Shams University

Prof. Tharwat Easa Siyam

Professor of Radiochemistry, The Former Chairman of Hot Labs. Centre, Atomic Energy Authority

Prof. Farid Abou El-Nour

Professor of Radiochemistry, The Former Vice Chairman of Atomic Energy Authority

Prof. Essam Metwally

Professor of Radiochemistry, Vice Chairman of Radioisotopes Production and radioactive sources division, Hot Labs. Center, Atomic Energy Authority

To
Chemistry Department
Faculty of Science, Ain Shams University
For Philosophy Doctor in Organic Chemistry
2019

Approval Sheet for submission Ph.D. Thesis

Name of candidate: Islam Mohamed Abdelmonem Mohamed

Degree: Ph.D. in chemistry

Thesis title: Natural Polymer–Carbon Nanotube Composites

Prepared by Gamma Radiation for the Removal of

Some Radionuclides

This thesis has been approved by:

1- Prof. Abdel-Rahman Mahmoud Mousa

Professor of Polymers, Faculty of Science, Ain Shams University

2- Prof. Tharwat Easa Siyam

Professor of Radiochemistry, The Former Chairman of Hot Labs. Centre, Atomic Energy Authority

3- Prof. Farid Abou El-Nour

Professor of Radiochemistry, The Former Vice Chairman of Atomic Energy Authority

4- Prof. Essam Metwally

Professor of Radiochemistry, Vice Chairman of Radioisotopes Production and radioactive sources division, Hot Labs. Center, Atomic Energy Authority

Approval

Prof. Ibrahim H. A. Badr

Head of Chemistry Department, Faculty of Science, Ain Shams University

Approval Sheet for submission Ph.D. Thesis

Name of candidate: Islam Mohamed Abdelmonem Mohamed

Degree: Ph.D. in chemistry

Thesis title: Natural Polymer–Carbon Nanotube Composites

Prepared by Gamma Radiation for the Removal of

Some Radionuclides

This thesis has been approved by:

1- Prof. Abdel-Rahman Mahmoud Mousa

Professor of Polymers, Faculty of Science, Ain Shams University

2- Prof. Farid Abou El-Nour

Professor of Radiochemistry, The Former Vice Chairman of Atomic Energy Authority

3- Prof. Elsayed Mohamed Abdel Bary

Professor of Applied Chemistry, Faculty of Science, Mansoura University

4- Prof. Mahmoud Ahmed Abd El-Ghaffar

Professor of Polymers and Pigments, National Research Centre

Approval

Prof. Ibrahim H. A. Badr

Head of Chemistry Department, Faculty of Science, Ain Shams University

Dedicated To

(The Spirit of My Father)

To

My Mother,

My Lovely Wife and My Sons [Menna, Omar and Yassin]

&

My Brothers and My Sister

&

The Rest of My Family

ACKNOWLEDGEMENT

In the name of **ALLAH**, the most merciful and almighty **WHO** gave me the courage, energy and patience to complete this study.

My first and foremost gratitude goes to my supervisor, **Professor Abdel–Rahman Mahmoud Mousa**, Prof. of polymers, Faculty of Science, Ain Shams University, for his honest and friendly guidance, his extremely useful ideas and endless professional support. Thank you very much for your valuable time and immeasurable patience.

Very special thanks to my PhD supervisors **Professor Tharwat Essa Siyam** and **Professor Essam Metwally** Professors of radiochemistry, Nuclear Chemistery Department, Hot Labs. Center, Egyptian Atomic Energy Authority. All my deepest appreciation for the invaluable guidance and support to my professors. Actually this thesis would not have been possible without their continuous advice and constant support that provided over the course of my PhD research, for which I will remain forever grateful. Their enthusiasm for the exploration of new ideas in scientific research has inspired me to constantly seek to become a better researcher.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Farid Abou El-Nour**, Professor of Radiochemistry. The Former Vice Chairman of Atomic Energy Authority; for his great help and support, effective supervision, his kind assistance, continuous encouragement and careful revision of this work.

I am sincerely grateful to my wife for unlimited support and looking after me. She and my sons put a smile on my face when I thought there was nothing to smile about.

Finally, I really would like to thank those who helped me even with a word of support, those who really affected and still affecting my life everywhere.

Islam M. Abdelmonem

Contents

	Contents	
Publis	hed work	
List of	Tables	
List of	Figures	I
List of	Abbrevitations	IX
Abstra	ıct	XI
1. Int	troduction	1
1.1.	Composites	1
1.2.	Nanocomposites	2
1.3.	Nanofiller	3
1.4.	Carbon nanotubes	
1.4.1.	Properties of CNTs	
1.4.2.	Carbon nanotube synthesis	5
1.4.3.	Dispersion of CNTs	5
1.4.4.	Carbon nanotube applications	6
1.4.5.	Carbon Nanotubes in Green Nanocomposites Design	
1.5.	Polymer matrix	8
1.5.1.	Natural polymer	9
1.5.2.	Grafting copolymerization onto natural polymers	12
1.5.3.	Template polymerization	16
1.6.	Polymer-Carbon nanotube nanocomposites	22
1.6.1.	Functionalization of CNTs	22
1.6.2.	Nanocomposites preparation	26
1.7.	Treatment methods for radioactive wastes	27
1.7.1.	Origin of radioactive waste	27
1.7.2.	Classification of radioactive wastes	27
1.7.3.	Treatment of radioactive waste	28
1.8.	Literature survey	31

2. Ex	perimental	. 39
2.1.	Chemicals and Reagents.	. 39
2.2.	Equipment, Instruments and Measurements	. 39
2.3.	Synthesis Methodology	. 43
2.3.1.	Multi-functionalization of MWCNTs	. 43
2.3.2.	Synthesis of CS-AA/MWCNTs composites	. 43
2.3.3.	Synthesis of CS-VP/MWCNTs composites	. 44
2.3.4.	Synthesis of CS-AA-VP/MWCNTs composites	. 45
2.3.5.	Synthesis of Alg- AA/MWCNTs composites	. 46
2.3.6.	Synthesis of Alg-AA-VSA/MWCNTs composites	. 47
2.3.7.	Synthesis of starch- AA/MWCNTs composites	. 48
2.3.8.	Synthesis of starch-AA-VSA/MWCNTs composites	. 40
2.4.	Calculation of radiation dose	. 50
2.5.	Estimation of Grafting Parameters	. 50
2.6.	Swelling	. 51
2.7.	Adsorption Studies of Radioactive Isotopes	. 51
2.8.	Regeneration of the nanocomposites	. 52
3. Re	sults and Discussion	. 53
3.1.	Multi-functionalization of MWCNTs	. 53
3.2.	Synthesis of chitosan/MWCNTs composite	. 53
	Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes (CWCNTs) composite	
	Synthesis of chitosan-N-vinyl-2-pyrrolidone/multiwalled carlubes (CS-VP/MWCNTs) composite	
	Synthesis of chitosan-acrylic acid-N-vinyl-2-pyrrolidone/ multiwal nanotubes (CS-AA-VP/MWCNTs) composite	
3.3.	Synthesis of alginate multi-walled carbon nanotubes composites	. 74
	Synthesis of alginate-acrylic acid/multiwalled carbon nanotubes (AWCNTs) composite	_

	Synthesis of alginate-acrylic acid—vinylsulfonic acid solutiwalled carbon nanotubes (ALg-AA-VSA/MWCNTs) composite	
3.4.	Synthesis of starch /multiwalled carbon nanotubes composites	86
	Synthesis of starch-acrylic acid/multiwalled carbon nanotubes (Starch) composite	
	Synthesis of starch-acrylic acid-vinylsulfonic acid solltiwalled carbon nanotubes (starch-AA-VSA/MWCNTs) compositions	
3.4.3.	Synthesis summary	99
3.5.	Characterization	100
3.5.1.	FTIR Analysis	100
3.5.2.	Scanning electron microscopy (SEM)	106
3.5.3.	TGA and DTA	108
3.6.	Applications	123
3.6.1.	Removal of radiocobalt	124
3.6.2.	Removal of radiocesium	131
3.6.3.	Removal of europium ions	137
3.7.	Adsorption isotherms	144
3.8.	Adsorption kinetics.	149
3.9.	Thermodynamic Studies	155
3.10.	Nanocomposites-radionuclides interactions	159
Sumn	mary and conclusions	163
Refer	rences	167
Arabi	ic summary	ت
Arabi	ic abstract	أ