Comparative Analysis of Different Activation Methods on Platelet Rich Plasma

Thesis

Submitted in Partial Fulfillment for the Master Degree in Clinical Pathology

Presented by

Noha Mohamed Ahmed El Shishtawy

M.M., B.Ch Haematology Resident, Theodor Bilharz Research Institute

Supervised by

Prof. Dr./ Ibrahim Youssef Abdel-Messih

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Prof. Dr./ Iman Abd El Aziz Khaled

Professor of Clinical Pathology
Haematology Department
Theodor Bilharz Research Institute

Assist. Prof. / Mohamed Tarif Mohamed Hamza

Assist. Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

First and foremost, thanks to **Allah**; to whom I relate any success in achieving any work in my life.

Words stand short when they come to express my gratefulness to my supervisors. I wish to express my deepest gratitude to **Professor Dr. Ibrahim Youssef Abdel-Messih**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his effective guidance, unlimited help and support. No words of gratitude would be enough for him. I really have the honor to complete this work under his supervision.

I wish to express my deep appreciation and profound gratitude to **Professor Dr. Iman Abd El Aziz Khaled,** Professor of Clinical and Chemical Pathology, Theodor Bilharz Research Institute, for her indispensable guidance, instructional supervision, continuous support, unlimited help, unlimited patience and close supervision throughout the entire work.

I am greatly honored to express my sincere gratitude and deep appreciation to **Assistant Professor Dr. Mohamed Tarif Mohamed Hamza**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his help and support.

I can't forget to thank with all appreciation **Prof. Dr. Salwa Toema**, Professor of Clinical Pathology, Theodor Bilharz Research Institute, for her encouragement and support.

I would like to thank all the staff members and colleagues of the Haematology Department, **Theodor Bilharz Research** Institute who supported me a lot throughout this entire work.

Last but not least, my deepest appreciation is expressed to all members in my family, especially my **Mother** and **Father** for their cooperation and encouragement.

Noha M. El-Shishtawy

2019

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	5
Review of Literature	
Platelets	6
Platelet Rich Plasma	30
Platelet Activation	47
Platelets and Liver	69
Subjects and Methods	74
Results	79
Discussion	88
Summary and Conclusion	94
Recommendations	98
References	99
Arabic Summary	······

List of Abbreviations

Abbrev, Full-term

ADP : Adenosine diphosphate

ADSC : Adipose tissue derived stem cells

ANOVA : Analysis of variance

bFGF : Basic fibroblast growth factor

BMSC: Bone marrow stem cells

CBD : Carboxy-terminal cell binding domainCIB : Calcium- and integrin-binding protein

DAG : Diacylglycerol

DTS : Dense tubular systemECM : Extracellular matrix

EDTA : Ethylenediaminetetraacetic acid

EGF : Epidermal growth factor

ELISA : Enzyme-linked immunosorbent assayERK : Extracellular signal-regulated kinase

Fg : Fibrinogen Fn : Fibronectin

GMP : Guanosine monophosphate

GP : Glycoprotein

GPCR
 G protein-coupled receptor
 GRB
 Growth factor receptor bound
 HGF
 Hepatocyte growth factor
 HSC
 Hematopoietic stem cell
 IAP
 Integrin-associated protein

ICAM : Intercellular adhesion molecule

IGF : Insulin growth factor

IGFBP : Insulin growth factor binding proteins

IL : Interleukin

IP₃ : Inositol triphosphate

ITAM : Immunoreceptor tyrosine-based activatory motifITIM : Immunoreceptor tyrosine-based inhibitory motif

LAMP : Lysosomal-associated membrane protein

LIBS : Ligand-induced binding site

LSECs: Liver sinusoidal endothelial cells

MAP : Mitogen-activated protein

MAPK : Mitogen-activated protein kinaseMCP : Monocyte chemotactic protein

MK : Megakaryocyte

MPT : Mitochondrial permeability transition

MSC : Mesenchymal stem cells
 MVBs : Multivesicular bodies
 NBEAL2 : Neurobeachin-like 2
 OCS : open canalicular system

PAC : Procaspase-activating compound

PADGEM: Platelet activation dependent granule-external

membrane protein

PAF : Platelet activating factor

PAI-1 : Plasminogen activator inhibitor type I

PAR : Protease activated receptor
 PDGF : Platelet Derived Growth Factor
 PDI : Protein disulfide isomerase

PECAM: Platelet endothelial cell adhesion molecule

PF4 : Platelet factor 4
PG : Prostaglandin

PI3K : Phosphatidylinositol 3-kinase

PKG: Protein kinase G

PRGF: Plasma rich in growth factors

PRP : Platelet Rich Plasma
PS : Phosphatidylserine
PtdIns : phosphatidylinositol
PTKs : Protein tyrosine kinases

PTPs: Protein-tyrosine phosphatases

RANKL : Receptor-activator of nuclear factor kappa beta

ligand

ROS : Reactive oxygen speciesS1P : Sphingosine-1-phosphate

SCF : Stem cell factorSD : Standard deviation

SDF : Stromal cell-derived factor

SNAP : Soluble N-ethylmaleimide-sensitive factor

attachment protein

SNARE : Soluble N-ethylmaleimide-sensitive factor

attachment receptor

SOCS : Suppressors of cytokine signalling

STAT : Signal transducer and activator of transcriptionSTEM : Scanning transmission electron microscopy

TFPI : Tissue factor pathway inhibitor
 TGFβ : Transforming growth factor beta
 TIMPs : Tissue inhibitors of metalloproteases

TLR : Toll like receptor

TMEM : Transmembrane proteinTNF : Tumor necrosis factor

TPO : Thrombopoietin
TSP : Thrombospondin
TXA2 : Thromboxane A2
TXA2 : Thromboxane A2

TXR : Thromboxane A_2 receptor

VAMP
 Vesicle- associated membrane protein
 VEGF
 Vesicle-associated membrane protein
 VEGF
 Vascular endothelial growth factor

Vn : Vitronectin

vWF : Von Willibrand factor

List of Tables

Table No	. Title	Page No.
Table (1):	Contents of α granules	12
Table (2):	Synopsis of growth factors contain platelet rich plasma	
Table (3):	Miscellaneous Clinical Application Prp	
Table (4):	Laboratory results for particepants	80
Table (5):	PDGF-AB comparison between diffactivators of PRP (<i>P</i> value)	
Table (6):	TGF- β comparison between diffactivators of PRP (<i>P</i> value)	
Table (7):	Comparison between mean ± S different activators of PRP with regroup	esting

List of Figures

Figure N	6. Title	Page No.
Figure (1):	Diagrammatic representation of corona longitudinal section of the platelet	
Figure (2):	Platelet degranulation and action or released cytokines in the proof formation of new bone tissue	cessof
Figure (3):	Cell proliferation triangle, fundament tissue engineering. Source adapted Crane and Everts	from
Figure (4):	Stem cell can replicate and differentiate	e35
Figure (5):	Stem cells differentiate into different tis	ssues 35
Figure (6):	Preparation of PRP using 2 centrifugati	ons 37
Figure (7):	Some clinical applications of PRI osteoarthritis (A) and in alopecia areata	
Figure (8):	Platelet activation responses	50
Figure (9):	Structure of the liver lobule (A) and the sinusoid (B)	
Figure (10):	PDGF-AB comparison between diffactivators of PRP	
Figure (11):	TGF- β comparison between diffactivators of PRP	

Introduction

Platelet Rich Plasma (PRP) has been a breakthrough in the stimulation and acceleration of healing for over 20 years, starting by tissue repair in dentistry and expanding its clinical applications to other fields afterwards (Marx et al., 1998). It represents a relatively new biotechnology that is part of growing interest for extensive research in tissue engineering and regenerative medicine nowadays (Niemeyer et al., 2010).

Platelet-rich plasma is autologous plasma with high platelet concentration used to accelerate healing, due to several different growth factors and cytokines. PRP is easy, cheap, safe, and minimally invasive source for autologous growth factors (Cavallo et al., 2016). Platelet rich plasma is prepared by centrifugation with different centrifugal forces, temperature, and time. Accordingly the two-step procedure is most widely used, in which the first step (soft spin) separates plasma buffy coat and cells and a second spin (hard spin) further concentrates platelets with an outcome of platelets exceeding 400 x 10⁹/L; unlike platelet poor plasma which gives platelets less than 10 x 10⁹/L following vigorous centrifugation (Alves & Grimalt, 2018).

Platelets are disk shaped fragments of megakaryocytes originating from stem cells in the bone marrow. Platelets are approximately 2 µm in diameter (Machlus et al., 2014) (Michelson & Alan, 2013). The platelets count ranges from

150-400 x 10⁹ per litre with a life span of 7-10 days (**Thon et al., 2010**). Although platelets most known function is hemostatic, a process which controls bleeding by forming a clot at the site of a cut or wound by sticking platelets together; other beneficial effects of PRP have been revealed such as cell proliferation, differentiation, improved synthesis of extracellular matrix (ECM), and angiogenesis which results in neovascularization and formation of a new conjunctive tissue necessary for healing (**Marwah et al., 2014**) (**Cervantes et al., 2018**).

Platelets contain alpha (α) granules, dense granules, and lysosomes; with α granules being most abundant. Each type has specific properties concerning both the structure and function. Alpha granules -80 granules per platelet- contain growth factors (such as PDGF, bFGF, SDF 1α), angiogenic factors (such as VEGF, angiogenin), necrotic factors (such as TNF α , TNF β), hemostatic (such as factor V, VWF, Fibrinogen), and other cytokines (Blair & Flaumenhaft, 2009) (Whiteheart, 2011). Alpha-Granules function in adhesion of platelets and healing (Rendu et al., 2001). The dense granules contain adenosine diphosphate (ADP), adenosine triphosphate (ATP), ionized calcium, and serotonin (Orkin et al., 2001). Dense granules function in recruiting other platelets. Lysosomes contain hydrolases that eliminate platelet aggregates (Rendu et al., 2001).

The platelets can be activated in vivo or in vitro. Once activated, platelets show morphological changes from the discoid to round shape, develop pseudopods that spread through the injured tissue, and platelets adhere to one another and to collagen in endothelium forming platelet aggregates. Degranulation of their granules also occur releasing GFs from α -granules by either fusion with the open canalicular system and extrusion of its contents through small channels in the cell membrane, or by exocytosis, that is releasing α granules content outside by fusing the granules with the cell membrane (Zandim et al., 2012). Additionally, a platelet gel forms through a clotting process by cleavage of fibrinogen. The factors activate an intracellular signal protein that causes the expression of a gene sequence that directs cell migration, proliferation and differentiation, and promote extracellular matrix accumulation by binding to specific cell surface receptors on target cells (eg. Mesenchymal stem cells, osteoblasts, fibroblast, endothelial cells, and epidermal cells) thus provoking tissue repair and regeneration (Dhurat and Sukesh, 2014).

Activation may be initiated in vivo by thrombin, calcium, collagen, and shear stress. In clinical practice, PRP may be pre-activated using in vitro calcium or/and thrombin (bovine or autologous) to induce release of GF from PRP.

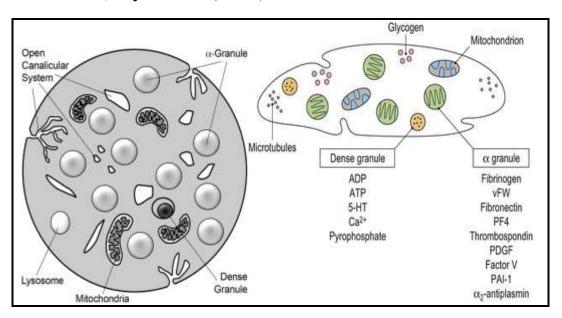
However, evidence is lacking for pre-injection activation requirement for therapeutic uses (Cavallo et al., 2016).

PRP is prepared for either harvesting platelets for therapeutic purposes or testing platelet function using aggregometer (Gentile et al., 2010). Therapeutic clinical applications for PRP have revealed remarkable results in dentistry (Anitua, 1999), surgeries (Patel et al., 2016) (Arnalich et al., 2016), orthopaedics (Filardo et al., 2012), rheumatology (Cieslik-Bielecka et al., 2009), chronic wounds (Rozmam et al., 2007), and muscle injuries (Hammond et al., 2009).

In recent years, platelets were discovered to have a positive influence on the liver thus promoting its regeneration (Murata et al., 2014) (Takahashi et al., 2013), improving liver fibrosis (Takahashi et al., 2013) (Nowatari et al., 2014) (Hesami et al., 2014), and attenuating liver damage (Hisakura et al., **2011)**; as it accelerates liver regeneration and have anti-fibrosis and anti-apoptotic activity. Platelets have a direct impact on supportive effect with liver hepatocytes, a sinusoidal endothelial cells, and a cooperative effect with Kupffer cells accelerates liver regeneration. **Platelets** undergo 5'-monophosphate adenosine-cyclic adenosine signaling pathway which deactivates hepatic stellate cells thus applying anti-fibrotic activity. Platelets activate the Akt pathway and upregulates Bcl-xL, which in turn suppresses caspase-3 activation thus preventing hepatocyte apoptosis (Takahashi et al., 2013).

Aim of the Work

To compare different strategies of PRP activation by evaluating content and release of growth factors for further clinical trials to validate the clinical relevance of best method to help regeneration of liver in hepatic patients.


Chapter 1: Platelets

latelets, or thrombocytes, are small (approximately 2-3 μm in diameter), rounded or oval disc-shaped, anucleate cells formed from the fragmentation of long proplatelet extensions, that become interwoven through endothelial pores of the bone marrow sinusoids and are fragmented by shear forces releasing platelets from the megakaryocyte. Megakaryocyte is large multinucleated cell from myeloid lineage of hematopoietic stem cells constituting 0.1% of cellular population of the bone marrow (Junt et al., 2007, Francone et al., 1990). A single megakaryocyte can give rise to 1,000–3,000 platelets (Stenberg and Levin; 1989) before the residual nuclear material is eliminated by macrophage-mediated phagocytosis (Radley and Haller; 1983). Differentiation of stem cells to platelets is predominantly driven by thrombopoietin (TPO) signaling through the cMpl receptor, and is supported by additional growth factors such as interleukin-3 (IL-3), stem cell factor (SCF), IL-6, and IL-11 (Kaushansky, 2006).

Thrombopoietin is the principal regulator of thrombopoiesis and primate platelet counts can be reduced with an inhibitor against TPO without impairment of primary hemostasis (**Kaushansky**; **2006**, **Tucker et al.**, **2010**). Platelets count ranges from 150,000 to 350.000/ll (**Weibrich**

et al., 2002). The efficiency of platelets is variable, affected by size and age of the platelet, with younger and larger platelets exhibiting better hemostatic function than smaller and older ones (Karpatkin,; 1978, Hartley; 2007). Platelets contribute to many aspects of host defense including hemostasis and thrombosis, inflammation, angiogenesis, and wound healing (Franco et al., 2015).

Although they lack a nucleus, platelets have an extensive cytoskeleton, organelles, specific granules and membrane features (Weyrich et al., 2009).

Figure (1): Diagrammatic representation of coronal (left) and longitudinal (right) section of the platelet.