

THE USE OF SOME WASTE MATERIALS IN THE PREPARATION OF VITRIFIED CLAY PIPES

By

Noha Fawzy Mohamed El Husseiny

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in **Chemical Engineering**

The Use of Some Waste Materials in the Preparation of Vitrified Clay Pipes

By Noha Fawzy Mohamed El Husseiny

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in **Chemical Engineering**

Under the Supervision of

Prof. Magdi Fouad Abadir	Prof. Mai Mohamed Kamal
Chemical Engineering Department Faculty of Engineering, Cairo University	Chemical Engineering Department Faculty of Engineering, Cairo University
Ass. Prof.Dr. Sheree	n Kamel Amin Kamel

Associate Professor Chemical Engineering and Pilot Plant Department Engineering Research Division National Research Centre (NRC)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

The Use of Some Waste Materials in the Preparation of Vitrified Clay Pipes

By Noha Fawzy Mohamed El Husseiny

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Magdi F. Abadir

Thesis Main Advisor

Faculty of Engineering, Cairo University

Prof. Dr. Hanan Hassan El-Sersy Internal Examiner

Faculty of Engineering, Cairo University

Prof. Dr. Adli Abdallah Hanna External Examiner

Professor in the National Research Centre

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Noha Fawzy Mohamed El-Husseiny

Date of Birth: 14/9/1970 **Nationality:** Egyptian

E-mail: Nohaalhoseny70@gmail.com

Phone: 01006354600

Address: 24 Ibn ElNafees st., Nasr City, Cairo

Registration Date: 1/10/2014 **Awarding Date:** //2018

Degree: Doctor of Philosophy **Department:** Chemical Engineering

Supervisors:

Prof. Magdi Fouad Abadir Prof. Mai Mohamed Kamal

Ass. Prof. Dr. Shereen Kamel Amin Kamel

Associate Professor in the Chemical Engineering and Pilot Plant department Engineering Research Division

National Research Centre (NRC)

Examiners:

Prof. Adli Abdallah Hanna (External Examiner)

National Research Center

Prof. Hanan Hassan El Sersy (Internal examiner) **Porf. Magdi Fouad Abadir** (Thesis main advisor)

Title of Thesis:

The use of Some Waste Materials in the Preparation of Vitrified Clay Pipes

Key Words:

Ceramic sludge; cullet, vitrified clay pipes, standards, Factorial design

Summary:

The use of various wastes in the manufacture of different ceramic products has proved to be beneficial from both economic and environmental points of view. In the present work, the simultaneous reuse of ceramic sludge waste (from 0 to 10%) and cullet (from 0 to 10%) in the production of vitrified clay pipes has been investigated. Samples were pressed, dried and subsequently fired at three different temperatures (1050, 1150 and 1250°C) and soaking times (1, 2 and 3 hours). A two-level factorial design was applied to study the effect of the various parameters on the properties of fired bodies. It was concluded that an economic recipe can be prepared involving the use of 5% ceramic sludge (dry basis) and 3.3% cullet with the balance clay + grog followed by firing the dried body at 1050°C for two hours. The produced fired specimens yielded bending strength exceeding the minimum requirement for any size of soil embedded pipes and for 8" and larger concrete cradled pipes. The suggested composition makes use of an environmentally polluting waste (sludge) and broken glass waste (cullet) and involves firing for two hours at a temperature about 200°C lower than commonly used.

Insert photo here

Acknowledgments

IN THE NAME OF ALLAH, MOST GRACIOUS, MOST MERCIFUL,

I wish to express my sincere gratitude, respect, admiration and appreciation to Prof. Dr. **Magdi F. Abadir**, Chemical Engineering Department, Faculty of Engineering, Cairo University for his unique and valuable way of supervision, unlimited support, guidance, assistance, encouragement and also for his utmost patience. Dear, you taught me how charm is the relation between the professor and his student besides the valuable knowledge and in addition to skills and experience I acquired during this work because of you. Words can't really express my profound grateful feelings and great appreciation.

I would also like to express my deepest thanks, appreciation, and gratitude to Prof. Dr. **Mai Kamal Fouad** Chemical Engineering Department, Faculty of Engineering, Cairo University, dear professor, for her fruitful guidance and scientific supervision through every stage in my work. I am deeply grateful to her for her encouragement, advices, remarks, and unlimited support.

I wish to express also my profound gratitude and sincere appreciation to Dr. Shereen Kamel Amin, National Research Center, Dokki, Giza, Egypt, for her direction, assistance, guidance, encouragement, support and understanding. This work couldn't be accomplished without her remarks, patience and engagement through the learning process of the thesis. It was a great honor to work under her guidance and supervision.

I would also like to express my deepest gratitude to my family: my husband Medhat Kamal for his love and support and understanding of my duty to complete this work. My son Ahmed Medhat for his continuous prayers and support, I don't know how far I could continue if you wouldn't here beside my heart my sweethearts. Love you both. Mummy thanks dear for your moral and personal support, and your encouragement in every step of my life. Very special and warm thanks are due to my sisters in law Magda, Mervat and Mona Mohamed Kamal, love you all.

I would like to thank my dear friends for their love, help and support by keeping me harmonious and optimistic during the most stressful times even helping me out whenever needed especially Dr. Shereen Samir for her unlimited support through my life, Eng. Nashwa El-Tahan ♥♥, Dr. Nora Yehia, Dr. Elshaimaa Elzahed and the dearest Dr. Soad abdelaziz, thanks for being here in my life.

I would like to thank my colleagues, and staff of the Chemical Engineering Department, Higher Technological Institute, for their cooperation and their help in various ways especially Prof. Dr. **Maher G. Soliman**, Professor and Head of Chemical Engineering Department, Higher Technological Institute, and Eng. **Mohamed Yehia** for his continuous help and support. Special thanks should be given to my students too.

Table of Contents

ACKNO	WLEDGMENTS	I
TABLE	OF CONTENTS	III
LIST OF	TABLES	V
LIST OF	FIGURES	VII
NOMEN	CLATURE	IX
ABSTRA	ACT	XIII
СНАРТЕ	ER 1 : INTRODUCTION	1
СНАРТЕ	ER 2 : LITERATURE REVIEW	5
2.1.	Introduction '	5
2.2.	RAW MATERIALS FOR THE CERAMIC INDUSTRY	5
2.2.1.	Classification	
2.2.2.	Clays	6
2.2.3.	Silica	12
2.2.4.	Feldspars	14
2.2.5.	Other Raw Materials	14
2.2.6.	Occurrence of Ceramic Raw Materials in Egypt	15
2.3.	MANUFACTURE OF VITRIFIED CLAY PIPES	
2.3.1.	Raw Materials	15
2.3.2.	Processing Steps	16
2.4.	THE USE OF WASTES IN THE CERAMIC INDUSTRY	
2.4.1.	Introduction	27
2.4.2.	Wastes Used in the Clay Brick Industry	27
2.4.3.	Wastes Used in the Ceramic Tiles Industry	
2.5.	STATISTICAL HANDLING OF EXPERIMENTAL DATA	32
2.5.1.	Introduction	32
2.5.2.	Steepest Ascent Method	36
2.6.	AIM OF THE PRESENT WORK	36
СНАРТЕ	ER 3 : METHODS AND MATERIALS	37
3.1.	Introduction	37
3.2.	RAW MATERIALS	37
3.3.	CLASSIFICATION OF RAW MATERIALS	38
3.3.1.	Screen Analysis	38
3.3.2.	Chemical Analysis (XRF)	39
3.3.3.	Mineralogical Analysis (XRD)	41
3.3.4.	Determination of Powder Density by Archimedes Method	41
3.4.	PREPARATION OF MIXTURES	

3.4.1.	Determination of Plasticity of Prepared Mixtures	43
3.5.	PREPARATION OF CLAY PIPE SPECIMENS	43
3.6.	TESTING OF UNFIRED AND FIRED CLAY PIPES SPECIMENS	44
3.6.1.	Determination of Linear Drying – Firing Shrinkage	44
3.6.2.	Determination of Loss on Ignition	
3.6.3.	Determination of Bulk Density	
3.6.4.	Determination of Water Absorption and Apparent Porosity	45
3.6.5.	Determination of Modulus of Rupture, MOR	46
3.6.6.	Microscopic Investigations	48
СНАРТЕ	R 4 : RESULTS AND DISCUSSION	49
4.1.	CHARACTERIZATION OF RAW MATERIALS	49
4.1.1.	Chemical Analysis (XRF)	49
4.1.2.	Mineralogical Analysis (XRD)	
4.1.3.	Screen Analysis	53
4.1.4.	Determination of Powder Densities	54
4.2.	PROPERTIES OF GREEN SAMPLES	55
4.2.1.	Introduction	55
4.2.2.	Effect of Waste Content on Plasticity of Mixtures	55
4.2.3.	Effect of Waste Replacement on Drying Shrinkage	59
4.2.4.	Effect of Waste Replacement on MOR and Green Strength	60
4.3.	RESULTS OF FIRED SAMPLES	61
4.3.1.	Introduction	61
4.3.2.	Firing Shrinkage	62
4.3.3.	Bulk Density	64
4.3.4.	Apparent Porosity	67
4.3.5.	Boiling Water Absorption (%BWA)	70
4.3.6.	Modulus of Rupture (MOR)	74
4.4.	CONCLUDING REMARKS	78
4.5.	SEM INVESTIGATION RESULTS	79
СНАРТІ	ER 5 : CONCLUSION	81
5.1.	CHARACTERIZATION OF RAW MATERIALS	81
5.2.	PROPERTIES OF GREEN BODIES	82
5.3.	Properties of fired bodies	83
REFERE	NCES	85

List of Tables

CHAPTER 3: METHODS AND MATERIALS	37
Table 3.1: Raw material used for the preparation of clay sewer pipes mixes	38
Table 3.2: Particle size conversion table	
Table 3.3: Sample compositions	
Chapter 4 : results and discussion	
Table 4.1: Chemical analysis of raw materials	49
Table 4.2: Percent of organic matter in raw materials	
Table 4.3: The volume–surface mean diameter (\overline{D}_s) and (D_{50}) values of raw material	
Table 4.4: Powder density of raw materials	54
Table 4.5: Samples compositions	55
Table 4.6: Plasticity of different mixes	59
Table 4.7: Linear drying shrinkage of different mixes	59
Table 4.8: MOR and Breaking strength of different mixes	60
Table 4.9: Design variables	
Table 4.10: Results of Linear Firing Shrinkage	
Table 4.11: Regression coefficients of LSF equation	63
Table 4.12: Results of Bulk density (g.cm ⁻³)	
Table 4.13: Regression coefficients of bulk density equation	
Table 4.14: Results of percent apparent porosity	
Table 4.15: Correlation table for apparent porosity	
Table 4.16: Regression coefficients of porosity equation	
Table 4.17: Results of percent boiling water absorption	
Table 4.18: Regression coefficients of % boiling water equation	
Table 4.19: Correlation table for % BWA	
Table 4.20: Steepest descent method applied to percent BWA	
Table 4.21: Results of Modulus of Rupture	
Table 4.22: Correlat Standard strength requirements for vitrified clay pipes	
Table 4.23: Regression coefficients of MOR	
Table 4.24: BWA and MOR of the suggested mix	
Table 4.25: Standard strength requirements for vitrified clay pipes	79
Table 4.26: Standard strength requirements for vitrified clay pipes embedded in	
concrete cradle	79

List of Figures

CHAPTER 2 : LITERATURE REVIEW	5
Figure (2.1): 3 Unit cells of kaolinite	7
Figure (2.2): Two unit cells of Kaolinite	7
Figure (2.3): 2 Unit cells of Pyrophyllite	7
Figure (2.4): A unit cell of Pyrophyllite	7
Figure (2.5): Adsorption of cations on clay surface	8
Figure (2.6): Attractive and repulsive forces	9
Figure (2.7): Alkali ions go into solution	9
Figure (2.8): Stress – strain diagrams of clay – water mixtures	10
Figure (2.9): Polymorphic forms of silica	13
Figure (2.10): Volumetric changes accompanying allotropic transitions of silica	13
Figure (2.11): Locations of ores for ceramic	16
Figure (2.12): Simple flow diagram for processing steps	17
Figure (2.13): Hammer mill	17
Figure (2.14): Muller mixer	18
Figure (2.15): Pug mill extruder	18
Figure (2.16): Pipe extruders: (a) Horizontal	19
Figure (2.16): Pipe extruders: (b) Vertical	19
Figure (2.17): Mechanism of drying	20
Figure (2.18): Tunnel dryer for clay pipes	22
Figure (2.19): Sintering of ceramic particles	23
Figure (2.20): Direction of motion of grain boundary	23
Figure (2.21): Simulated steps of grain growth with prolonged time	24
Figure (2.22): Mullite needles	25
Figure (2.23): Diagrammatic representation of a tunnel kiln	27
CHAPTER 3 : METHODS AND MATERIALS	37
Figure (3.1): Set of sieves used for screen analysis test	39
Figure (3.2): AXIOS, Panalytical 2005, Wavelength Dispersive (WD – XRF)	
Sequential Spectrometer	40
Figure (3.3): Pfefferkorn plasticity tester	43

Figure (3.4): Strength Tester - Modulus of Rupture (MOR/5-TS)
Figure (3.5): Single edge notched specimen for the three point bending tests 47
Figure (3.6): EMITECH K550X sputter coater
CHAPTER 4: RESULTS AND DISCUSSION
Figure (4.1): XRD pattern of clay raw material
Figure (4.2): XRD pattern of Grog
Figure (4.3): XRD pattern of Cullet
Figure (4.4): XRD pattern of the ceramic waste sludge
Figure (4.5): Cumulative screen analysis of the raw materials
Figure (4.6): Effect of water addition on the plasticity of mixture (A)
Figure (4.7): Effect of water addition on the plasticity of mixture (B)
Figure (4.8): Effect of water addition on the plasticity of mixture (C)
Figure (4.9): Effect of water addition on the plasticity of mixture (D)
Figure (4.10): Effect of water addition on the plasticity of mixture (E)
Figure (4.11): Effect of water addition on the plasticity of mixtures
Figure (4.12): Relation between MOR and plasticity number
Figure (4.13): Comparison between calculated and experimental values of LSF 64
Figure (4.14): Comparison between calculated and experimental values of bulk density
XRD pattern of clay raw material
Figure (4.15): Comparison between calculated and experimental values of percent
apparent porosity70
Figure (4.16): Comparison between calculated and experimental values of percent
boiling water absorption
Figure (4.17): Relation between apparent porosity and percent water absorption 73
Figure (4.18): Comparison between calculated and experimental values of MOR 77
Figure (4.19): Relation between MOR and percent water absorption
Figure (4.20): SEM micrograph taken for a specimen of mixture A fired at 1050°C and
1 h soaking time
Figure (4.21): SEM micrograph taken for a specimen of mixture C fired at 1250°C and
3 h soaking time 80

Nomenclature

Symbols

VCP Vitrified clay pipes

 $\dot{\gamma}$ Strain rate, s⁻¹

τ shear stress, Pa

 au_0 Yield stress

 k_{μ} Constant

 n_{μ} Constant

He Hedstrom number

D Diameter of the viscometer cup, m

 ρ Density of the mix, kg.m⁻³

 μ Viscosity of the mix at a prefixed strain rate, Pa.s

 S_{dL} Linear drying shrinkage

 L_0 Initial wet length, cm

 L_d Final dry length, cm

 S_{dV} Volume drying shrinkage

 V_0 Initial wet volume, cm³

 V_D Final dry volume, cm³

 S_{fL} Linear firing shrinkage

 S_{fV} Volume firing shrinkage

 L_F Fired length, cm

 V_F Fired volume, cm³

 S_{TL} Total linear shrinkage