

The Analysis of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio in Guillain-Barre Syndrome as a Diagnostic and Prognostic Marker

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By

Khloud Adel Mohammed Hassan Tohlob M.B., B.Ch.

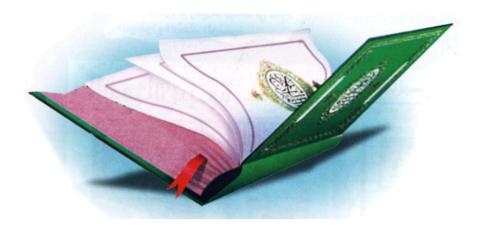
Under Supervision of

Prof. Magd Fouad Zakaria

Professor of Neuropsychiatry
Faculty of Medicine - Ain Shams University

Prof. Nagia Aly Fahmy

Professor of Neuropsychiatry
Faculty of Medicine - Ain Shams University


Dr. Hossam Shokri Mohammed

Lecturer of Neuropsychiatry
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2019

سم الله الرحيم

وقُل اعْمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُكُ مُ وَمُ سُولُهُ وَالمُؤْمِنُونَ عَمَلَكُ مُ وَمُ سُولُهُ وَالمُؤْمِنُونَ

صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Magd Found Zakaria**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof.** Magia Aly **Fahmy**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her sincere efforts and fruitful encouragement.

I am deeply thankful to **Dr. Hossam Shokri**Mohammed, Lecturer of Neuropsychiatry, Faculty of

Medicine, Ain Shams University, for his great help,
outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least, my sincere thanks and appreciation to all patients participated in this study.

Khloud Adel Mohammed Hassan Johlob

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	9
Introduction	1 -
Aim of the Work	13
Review of Literature	
■ Guillain-Barré Syndrome (GBS)	14
 Neutrophil-Lymphocyte Ratio and Platelet- I Ratio 	• -
Patients and Methods	41
Results	47
Discussion	77
Conclusion	83
Recommendations	84
Summary	85
References	88
Arabic Summary	

List of Tables

Table No.	Title Pag	e No.
Table (1):	Diagnostic criteria for Guillain-Barre syndrome	
Table (2):	Brighton criteria for Guillain-Barre syndrome diagnosis	
Table (3):	Clinical subtypes of GBS	28
Table (4):	Age and sex in control group and patient group	
Table (5):	Antecedent infection (GIT & Upperespiratory tract infection) among 61 GBS patients	3
Table (6):	Baseline clinical data among 61 GBS patients	
Table (7):	Disability score, NLR and PLR among 6: GBS patients 1st on admission, 2 nd or discharge and after 3 months	n
Table (8):	Baseline laboratory data in patients group	51
Table (9):	Baseline CSF analysis and NCS data among 61 GBS patients	
Table (10):	Follow up NCS after 3 months among 6: GBS patients	
Table (11):	Comparison between control group and 6: GBS patients as regards NLR and PLR or admission	ı
Table (12):	Comparison between AIDP group and other subtypes group as regards age and sex.	d

Tist of Tables cont...

Table No.	Title	Page	No.
Table (13):	Comparison between AIDP group other subtypes group as reantecedent infection.	gards	58
Table (14):	Comparison between AIDP group other subtypes group as regards disascore on admission, on discharge and 3 months	ability after	59
Table (15):	Comparison between AIDP group other subtypes group as regards NLP PLR on admission, on discharge and 3 months	R and after	61
Table (16):	Comparison between AIDP group other subtypes group as regards ESI CRP on admission	R and	65
Table (17):	Comparison between AIDP group other subtypes group as regards Cyt Dissociation	o-alb.	66
Table (18):	Comparison between AIDP group other subtypes group as regards after 3 months	NCS	67
Table (19):	Correlation of NLR and PLR with other parameters on admission		68
Table (20):	Correlation of NLR and PLR disability score after 3 months		71
Table (21):	Relation of NCS after 3 months with and PLR (on admission and afmonths)		73

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Major Guillain-Barré syndrome subt which antibody-mediated effector pa including complement activation, cau or axonal membrane injury with con- conduction failure	thways, use glial sequent
Fig. (2):	Antecedent infection among 61 patients	
Fig. (3):	Baseline clinical data among 6 patients.	
Fig. (4):	Cyto.alb. dissociation in 61GBS patien	nts53
Fig. (5):	Nerve conduction study in 61 GBS pon admission.	
Fig. (6):	Comparison between GBS patients and control group as regard N admission.	LR on
Fig. (7):	Comparison between GBS patients and control group as regard P admission.	LR on
Fig. (8):	Antecedent infection in AIDP ground other subtypes group	-
Fig. (9):	Comparison between AIDP group an subtypes group as regard disability s discharge	score on
Fig. (10):	Comparison between AIDP group an subtypes group as regard disabilit after 3 months.	y score
Fig. (11):	Comparison between AIDP group an subtypes group as regard NLR on adm	
Fig. (12):	Comparison between AIDP group an subtypes group as regard PLR on adm	

Tist of Figures cont...

Fig. No.	Title	Page No.
Fig. (13):	Comparison between AIDP group an subtypes group as regard NLR on disc	
Fig. (14):	Comparison between AIDP group an subtypes group as regard PLR on disc	
Fig. (15):	Comparison between AIDP group an subtypes group as regard NLR a months.	after 3
Fig. (16):	Comparison between AIDP group an subtypes group as regard PLR a months.	after 3
Fig. (17):	Comparison between AIDP group an subtypes group as regard NCS a months.	after 3
Fig. (18):	NLR and disability score on discharge	
Fig. (19):	NLR and disability score after 3 mont	hs69
Fig. (20):	PLR and disability score on discharge	70
Fig. (21):	PLR and disability score after 3 month	hs70
Fig. (22):	NLR and disability score after 3 mont	hs72
Fig. (23):	PLR and disability score after 3 month	hs72
Fig. (24):	NLR on admission and NCS after 3 m	onths74
Fig. (25):	PLR on admission and NCS after 3 me	onths74
Fig. (26):	NLR and NCS after 3 months	75
Fig. (27):	PLR and NCS after 3 months	75
Fig. (28):	Receiver operating characteristic (ROC) for NLR and PLR as a prediction of AIDP cases at admission	ctor for

Tist of Abbreviations

Abb.	Full term
AIDP	Acute inflammatory demyelinating polyneuropathy
<i>AMAN</i>	Acute motor axonal neuropathy
<i>AMSAN</i>	Acute motor and sensory axonal neuropathy
Anti-GQ1b	Anti-ganglioside complex
AUC	Area under curve
<i>CMV</i>	Cytomegalovirus
CSF	Cerebrospinal fluid
<i>EDSS</i>	Expanded Disability Status Scale
EGRIS	Erasmus GBS Respiratory Insufficiency Score
<i>GBS</i>	Guillain–Barré Syndrome
HS	Highly significant
<i>IQR</i>	Inter-quartile range
<i>IVIG</i>	Intravenous immunoglobulins
<i>LPS</i>	Lipopolysaccharide
MFS	Miller Fisher Syndrome
<i>MMPs</i>	Matrix Metallo Proteinase
<i>MNCV</i>	Motor nerve conduction velocity
<i>MRC</i>	Medical research council
<i>MS</i>	Multiple sclerosis
NCS	Nerve conduction study
<i>NLR</i>	Neutrophil lymphocyte ratio
NO	Nitric oxide

Tist of Abbreviations cont...

Abb.	Full term	
<i>NPV</i>	Negative predictive value	
<i>NS</i>	Non significant	
<i>PLR</i>	Platelet lymphocyte ratio	
<i>PPV</i>	Positive predictive value	
<i>RA</i>	Rheumatoid Arthritis	
ROC curve	Receiver operating characteristic curve	
S	Significant	
<i>SLE</i>	Systemic lupus erythematosus	
<i>SPSS</i>	Statistical Package for Social Science	
<i>TAK</i>	Takayasu's arteritis	
TRFs	Treatment-related fluctuations	
<i>UC</i>	Ulcerative colitis	
VGSC	Voltage gated sodium channel	

Introduction

uillain-Barre syndrome (GBS) is an acute immune mediated inflammatory demyelinating polyradiculoneuropathy. It is characterized by rapid regressive ascending weakness and diminished or absent deep tendon reflexes (**Doorn et al., 2008**).

GBS occurs in all age groups, men are affected more than women. The incidence of GBS is 1-2 cases per 100,000 populations per year (**Sejvar et al., 2011**).

GBS can be classified into four subtypes; the most is inflammatory demyelinating common type acute polyradiculoneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor sensory axonal neuropathy (AMSAN), Miller Fisher Syndrome (MFS). In AIDP, the immune response damages the myelin sheaths that protect peripheral nerve axons and produce the efficient transmission of nerve impulses. In AMAN, the damage affects the axons of motor neurons only, whereas the axons of sensory neurons are also damaged in AMSAN. In MFS, anti-ganglioside complex (anti-GQ1b) antibody target occulomotor and bulbar nerves (Hughes and Cornblath, 2005).

Some neurological disorders such as GBS can produce high level of inflammation, this leads to an increase or decrease in acute phase reactants such as proteins, neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio(PLR) (Mungan et al., 2014).

Recently, the NLR and the PLR are considered new biomarkers indicating the presence of inflammation (Akıl et al., 2014). They are useful biomarkers that can be used as diagnostic or prognostic markers in some inflammatory diseases. Ozler and Gunak reported that in Bell's palsy, as an example of inflammatory neuropathy, there was a significant correlation between increased NLR and poor prognosis (Ozler and Gunak, 2014). Alan et al. reported that the NLR and PLR might be associated with the presence and severity of Behcet's syndrome (Alan et al., 2015). Uslu et al. showed that NLR and PLR could be also used in assessing rheumatoid arthritis activity (RA) (Uslu et al., 2015). Qin et al. reported that NLR and PLR could reflect the disease activity in systemic lupus erythematosus (SLE) patients (Qin et al., 2016). Demirci et al. reported that NLR might be simple inexpensive and quick biomarker to predict multiple sclerosis (MS) patient's prognosis (*Demirci et al.*, 2015). Celikbilek et al. supported the role of NLR as a marker of prognosis in acute ischemic stroke (Celikbilek et al., 2014).

AIM OF THE WORK

e aimed from this work to evaluate the NLR and PLR as a diagnostic and prognostic markers in GBS patients.

Chapter 1

GUILLAIN-BARRÉ SYNDROME (GBS)

uillain-Barré syndrome (GBS) is an acute immunemediated inflammatory disorder of peripheral nerves and spinal roots. Immune response is the major cause of GBS. In this syndrome, auto-antibodies triggered by previous infections cross-react with gangliosides and result in peripheral nervous system injury (Van den et al., 2014).

Guillain–Barré syndrome (GBS) is the most frequent cause of acute flaccid paralysis, characterized by rapid ascending symmetrical weakness of the extremities, and diminished or absent deep tendon reflexes, which reaches a maximum severity within 4 weeks (Yuki et al., 2012).

GBS is a post infectious autoimmune disorder that often follow an upper or lower respiratory illness or gastroenteritis by 10 to 14 days. Approximately 70% of patients can identify a preceding illness, although it is often benign and may be minimized or forgotten by the patient (Willison et al., 2016).

When patients present with rapidly progressive ascending paralysis, the diagnosis of Guillain-Barré syndrome needs to be made as soon as possible. GBS pathogenic conditions are rapidly progressing usually takes day to 2 weeks to reach the maximal effect. It can be diagnosed mostly with the help of CSF examination and electrophysiological study.

Elevated concentration of CSF protein is usually observed in these patients. These proteins are involved in the arrangements of axonal domain and certain cytokines secreted in response to the bacterial infections (**Ziganshin et al., 2016**).

All patients with Guillain-Barré syndrome need close monitoring and supportive care (**Hughes et al., 2005**). Early initiation of treatment (intravenous immunoglobulins (IVIG) or plasma exchange) has benefits and life saving, especially in patients with rapidly progressive weakness (**Hughes et al., 2014**).

Epidemiology:

Most studies that estimate incidence rates of Guillain-Barré syndrome were done in Europe and North America, and showed a similar range of 0.8–1.9 (median 1.1) cases per 100.000 people per year (**Sejvar et al., 2011**). The annual incidence rate of Guillain-Barré syndrome increases with age (0.6 per 100000 per year in children and 2.7 per 100000 per year in elderly people aged 80 years and over) and the disease is slightly more frequent in males than in females. Seasonal fluctuations, presumably related to variations in infectious antecedents, have been reported, but these observations are rarely statistically significant (**Webb et al., 2015**).

Recently, a new study has been done about regional variation of GBS, the full clinical spectrum of guillian-barre syndrome was observed in patients from all countries participating in the international Guillian-barre syndrome