DETECTION OF ADULTERATION AND QUALITY PROPERTIES OF IMPORTED AND LOCALLY PRODUCED ROYAL JELLY

By

ZEINAB ABUZAID ASHOUR MOHAMED

B.Sc. Agric. Sc. (Agric. Plant Protection Department), Ain Shams Univ., 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Economic Entomology)

Department of Plant Protection

Faculty of Agriculture

Ain Shams University

Approval sheet

DETECTION OF ADULTERATION AND QUALITY PROPERTIES OF IMPORTED AND LOCALLY PRODUCED ROYAL JELLY

By

ZEINAB ABUZAID ASHOUR MOHAMED

B.Sc. Agric. Sc. (Agric. Plant Protection Department), Ain Shams Univ., 2013

This thesis for M.SC. degree has been approv	ea by:
Dr. Metwally Moustafa Ahmed Khatab	•••••
Associate Prof. Emeritus of Economic Ento	mology and Apieculture,
Faculty of Agriculture, Benha University.	
Dr. Mohamed El-Saeed El-Sherif	
Professor Emeritus of Economic Entomolog	gy and Apiculture, Faculty
of Agriculture, Ain Shams University.	
Dr. Mahmoud Abd El-Samie Mohamed Ali	
Professor of Economic Entomology and	l Apiculture, Faculty of
Agriculture, Ain Shams University.	

Date of examination: 30 / 3 / 2019

DETECTION OF ADULTERATION AND QUALITY PROPERTIES OF IMPORTED AND LOCALLY PRODUCED ROYAL JELLY

By

ZEINAB ABUZAID ASHOUR MOHAMED

B.Sc. Agric. Sc. (Agric. Plant Protection Department), Ain Shams Univ., 2013

Under the supervision of:

Dr. Mahmoud Abd El-Samie Mohamed Ali

Professor of Economic Entomology and Apiculture, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Sawsan Mohamed Abdel Megeed

Associate Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University.

Dr. Khaled Mohamed Amin Ramadan

Associate Professor of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University.

ACKNOWLEDGMENT

First of all, great thanks and praises to **ALLAH** who gave me strength and patience to accomplish this work. Really, no word can express how grateful I am to **ALLAH**.

Foremost, I would like to express my deepest and sincere gratitude to Prof. Dr. Mahmoud Abd El-Samie Mohamed Prof. of Economic Entomology and Apiculture, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his guidance, patience, motivation and assistance in preparing the manuscript and for allowing me to grow as a scientist. Also, I would like to express my appreciation to **Prof Dr. Lotfy Youssef** prof of Economic Entomology, Plant Protection Department, Faculty of Agriculture, Ain Shams University. Prof Dr. Nagy Y. Abd El-Ghafar Prof. of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University and Prof. Dr. Yehia Heikal, Prof. of Food Sciences Department, Faculty of Agriculture, Ain Shams University for Their efforts in providing some facilities required to successfully finish part of chemical analysis of royal jelly. Moreover my thanks also go to Prof. Dr. Lother Kroh Prof. of biochemistry, Berlin university of Technology. Berlin – Germany for his valuable help for analyzed fatty acid profile, 10-hydroxy-2-deconic acid and sugars in his laboratory.

Thanks are also extended to all biochemistry department staff especially my friend **Miss. Scham Mohamed** Biochemistry Department, Faculty of Agriculture, Ain Shams University. For her help.

Finally, words are not enough to express how I am grateful to my parents and my all family who pushed me to accomplish success in my life.

ABSTRACT

Zeinab, Abu Zaid Ashour. Detection of Adulteration and Quality Properties of Imported and Locally Produced Royal Jelly. Unpublished M. Sc. in Economic Entomology (Apiculture), Plant Protection Department, Faculty of Agriculture, Ain Shams University (Economic Entomology).

Experiment was carried out on honey bee colonies in the apiary located at Faculty of Agriculture, Ain Shams University, Shoubra El-Khema, Qualubia. To study the effect of food type with some plant extracts on royal jelly production and physiochemical composition of royal jelly, honey bee colonies were prepared for this study, they were divided into five different groups each group was received one of the following feeding treatments; the first one received extract of sugar bush leaves (Stevia rebaudiana) in water, the second group received extract of moringa leaves (*Moringa oleifera*) in honey syrup (67%), the third one received extract of coriander (Coriandrum sativum) in honey syrup (67%), the fourth group received honey syrup (67%), and the last one received plain sugar syrup (1 sugar: 1 water). The feeding treatment was continued for three months before starting royal jelly production. To study the quality assurance of royal jelly; Physical properties, chemical composition, microorganisms count and adulteration of royal jelly as well as, effect of storage period on royal jelly quality, own produced royal jelly (Pure royal jelly produced from honeybee colonies in the experimental apiary) during citrus blooming season and pure royal jelly samples produced from honeybee colonies fed on different extracts of some plants in addition local produced and imported royal jelly samples collected from Egyptian market were used in this study. The data summarized that, the number and percentage of accepted queen cells were significantly high in group fed on sugar bush, moringa, coriander extract and plain sugar syrup as compared with group which fed on honey syrup. It also concluded that, honeybee colonies fed on extract of sugar bush,

moringa, coriander and plain sugar syrup produced the highest amount of royal jelly followed by the group which fed on honey syrup. The own produced royal jelly (pure royal jelly samples which produced from honey bee colonies) showed more lightness (L-values= 69.06) as compared with local produced and imported royal jelly samples collected from Egyptian market, since their L-values were (67.98 and 65.62), respectively. The data indicated that, the mean value of moisture in royal jelly samples was (55.06, 62.03 and 61.04 %); The percentage of T.S.S was (15.40, 15.80 and 14..40 %); the T.R.S value was (5.60, 6.40 and 5.20%); the percentage of protein content was (14.38, 12.08 and 9.94%); the percentage of free amino acids was (3.20, 2.60 and 2.40%); the percentage of lipids was (3.22, 6.00 and 5.00%); and Ash content (%) was 4.60, 2.62 and 0.91% in (own pure produced royal jelly from honeybee colonies) local and imported royal jelly collected from Egyptian market, respectively. The sugars found in tested royal jelly samples were glucose, fructose, turanose, saccharose, and maltose with different ratio. The own produced royal jelly sample (royal jelly produced from the experimental honeybee colonies) showed the highest amount of 10-hydroxy-2-deconic acid (10-H2DA) (41.81%) of the total fatty acid area, while the other local produced and imported sample collected from Egyptian markets showed lowest amount of 10-H2DA far lower than that of all samples (17.88 to 24.52 %). For local produced and imported royal jelly collected from Egyption market, respectively for microorganisms count, four bacteria type (Clostridium botulinum, Bacillus cereus, Bacillus wakoensis and Micrococcus luteus), two fungi types (Aspergillus niger and Penicilliumspp) and one yeasts types (Saccharomyces cerevisiae) were determined according to cultural, morphological and physiological characters. It also concluded that, Clostridium botulinum was the most frequency compared with other bacteria types (B. cereus, B.wakoensis and *Micrococcus luteus*). Meanwhile, *Penicillium* sp fungus was the most frequency compared with A. niger fungus. Our data summarized that, no heamocytes or oenocytes and any tissues of queens, workers and drones

larvae of honeybees were found in own produced royal jelly (royal jelly produced from experimental honeybee colonies), meanwhile, they were found in local produced royal jelly collected from Egyptian market and imported royal jelly collected from Egyptian market parts.

Key words: Honey bees, *Apis mellifera*, royal jelly, production, physical properties, chemical composition, 10-HAD, adulteration.

CONTENTS

No.		Page
	LIST OF TABLES	IV
	LIST OF FIGURES	\mathbf{V}
	LIST OF ABBREVIATIONS	IX
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	6
2.1.	Royal jelly production	6
2.2.	Physical properties of royal jelly	9
2.3.	Chemical composition of royal jelly	10
2.3.1.	General chemical composition of royal jelly	10
2.3.2.	Carbohydrate content in royal jelly	17
2.3.3.	Protein and amino acids content in royal jelly	20
2.3.4.	Lipids and fatty acids in royal jelly	24
2.3.5.	Phenolic compound in royal jelly	29
2.3.6.	Vitamins in royal jelly	29
2.3.7.	Ash of royal jelly	30
2.4.	Effect of Storage period on physicochemical of	
	royal jelly	30
2.5.	Microorganisms (bacteria, fungi and yeasts) in royal	
	jelly and its anti-microbial properties	37
2.5.1.	Microorganisms (bacteria, fungi and yeasts) in royal	
	jelly	37
2.5.2.	Anti-microbial properties in royal jelly	37
2.6.	Detection of adulteration of royal jelly by using	
	honeybee larvae	40
3.	MATERIALS AND METHODS	42
3.1.	Royal jelly production	42
3.1.1.	Influence of food type with some plant extracts,	
	honey syrup and plain sugar syrup on royal jelly	
	production and physiochemical composition of	
	royal jelly	42

No.	
3.1.1.1.	Honey bee colonies
3.1.1.1.2.	Preparation of honey bee colonies
3.1.1.3.	Preparation of different feeding treatments
3.1.1.4.	Preparation of queenless colonies
3.1.1.5.	Royal jelly collection from queen cups
3.1.2.	Royal jelly production during citrus blooming
	season.
3.2.	Collection of royal jelly from Egyptian market
3.2.1.	Collection of local produced royal jelly from
	Egyptian market
3.2.2.	Collection of imported royal jelly from Egyptian
	market
3.3.	Quality assurance of royal jelly
3.3.1.	Physical properties of royal jelly
3.3.1.1.	Color measurements
3.3.1.2.	Viscosity, pH and total acidity
3.3.1.2.1.	Viscosity
3.3.1.2.2.	pH
3.3.1.2.3.	Total acidity (TA)
3.3.2.	Chemical composition of royal jelly
3.3.2.1.	Moisture content
3.3.2.2.	Determination of carbohydrate
3.3.2.2.1.	Reducing sugars
3.3.2.2.2.	Non- reducing sugar
3.3.2.2.3.	Sugar profile
3.3.2.2.4.	Analysis of sugar in royal jelly
3.3.2.3.	Determination of crude protein
3.3.2.4.	Determination of free amino acids
3.3.2.5.	Determination of lipids
3.3.2.6.	Determination of 10 hydroxy-2-deconic acid (10-
	H2DA)

No.	
3.3.2.7.	Total phenols content
3.3.2.8.	Determination of Ash
3.3.3.	Detection of microorganisms (bacteria, fungi and
	yeasts) in royal jelly
3.3.1.	Isolation of microorganisms from royal jelly
	samples
3.3.1.1.	Isolation of bacteria
3.3.1.2.	Isolation of fungi
3.3.1.2.1.	Preparation of fungi media
3.3.1.2.2.	Isolation of fungi
3.3.1.3.	Isolation of yeasts
3.3.1.3.1.	Preparation of yeasts media
3.3. 1. 4.	Isolation of yeasts
3.3.2.	Preservation of pure bacteria, fungi and yeasts
	cultures
3.3.3.	Identification and frequency (%) of microorganisms
	in royal jelly samples
3.3.4.	Detection of adulteration of royal jelly by using
	honeybee larvae
3.4.1.	Preparation of hemolemph film for light
	microscope
3.4.2.	Preparation of hemolemph film for scan Electron
	microscope
3.4.3.	Preparation of royal jell film for light
	microscope
3.4.4.	Preparation of royal jell film for scan Electron
	microscope
3.5.	Effect of storage period on chemical composition of
	royal jelly
3.6.	Experimental Design and Analysis
4.	RESULTS

No.	
4.1.	Quality assurance of royal jelly
4.1.	Influence of food type with some plant extracts,
	honey syrup and plain sugar syrup on royal jelly
	production and physiochemical composition of
	royal jelly
4.1.1.	Chemical composition of royal jelly
4.1.1.1.	Moisture
4.1.1.2.	Total soluble sugars
4.1.1.3.	Crude protein
4.1.1.4.	Free amino acids
4.1.1.5.	Crude lipids
4.1.1.6.	Ash
4.2.	Physiochemical properties of pure royal jelly
	produced from experimental honeybee colonies,
	local royal jelly collected from Egyptian market and
	imported royal jelly collected from Egyptian
	market
4.2.1.	Physical properties of royal jelly
4.2.1.1.	Color measurements
4.2.1.2.	Viscosity, PH and Total acidity of royal
	jelly
4.2.2.	Chemical composition of royal jelly
4.2.2.1.	Moisture
4.2.2.2.	Soluble sugars fractions
4.2.2.3.	
4.2.2.4.	Crude protein
4.2.2.5.	Crude protein Free amino acids in royal jelly
	-
4.2.2.6.	Free amino acids in royal jelly
4.2.2.6.	Free amino acids in royal jelly Crude lipids
	Free amino acids in royal jelly Crude lipids
4.2.2.6. 4.2.2.7.	Free amino acids in royal jelly Crude lipids Ash Sugars in royal jelly

No.		Page
	jelly	
4.2.2.10.	Phenol content in royal jelly	106
4.3.	Effect of storage period on chemical composition of	
	royal jelly	108
4.4	Detection of microorganisms (bacteria, fungi and	
	yeasts) in royal jelly	113
4.4.1.	Population of microorganisms in royal jelly	
	samples	114
4.4.2.	Frequency (%) of microorganisms (bacteria, fungi	
	and yeasts) in royal jelly samples	116
4.5.	Detection of adulteration of royal jelly by using	
	honeybee larvae	122
5.	DISCUSSION	130
6	SUMMARY	141
7.	REFERENCES	148
	ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Mean chemical components (%) of royal jelly samples produced from honey bee colonies fed on different extracts of Sugar bush (<i>Stevia rebaudiana</i>), Moringa (<i>Moringa oleifera</i>), Coriander (<i>Coriandrum sativum</i>), honey syrup and plain sugar syrup (1:1).	61
2	Color evaluation of pure royal jelly produced from honeybee colonies, local royal jelly and imported royal jelly collected from Egyptian market (Mean \pm S.E).	71
3	Mean value of viscosity, pH and total acidity (%) of royal jelly samples produced from honey bee colonies, local royal jelly and Imported royal jelly samples collected from Egyptian market (Mean \pm S.E).	75
4	Chemical components (%) of pure royal jelly produced from honey bee colonies, local royal jelly collected from Egyptian market and imported royal jelly collected from Egyptian market (Mean \pm S.E).	80
5	Sugars contents (%) of pure royal jelly samples produced from honey bee colonies, local royal jelly collected from Egyptian market and imported royal jelly collected from Egyptian market (Mean \pm S.E).	90
6	Fatty acids (%) in pure royal jelly produced from honey bee colonies, local royal jelly collected from Egyptian market and imported royal jelly collected from Egyptian market (Mean \pm S.E).	97
6A	Fatty acid profile (%) in pure royal jelly produced from honey bee colonies, local royal jelly collected from Egyptian market and imported royal jelly collected from Egyptian market	98
7	10-HDA in pure royal jelly produced from honey bee colonies, local royal jelly and imported royal jelly	100

No.		Page
	collected from Egyptian market (Mean \pm S.E).	
8	Mean phenol content of royal jelly samples produced	
	from honey bee colonies, Local produced royal jelly and	107
	imported royal jelly samples collected from Egyptian	
	market (Mean \pm S.E).	
	Effect of storage period on chemical composition (%) of	
9	royal jelly samples produced from honeybee colonies	110
9	fed on Sugar bush extract (Stevia rebaudiana) (Mean ±	110
	S.E).	
	Population averages of microorganisms (bacteria, fungi	
10	and yeasts) in pure royal jelly produced from honeybee	
	colonies, royal jelly collected from Egyptian market and	115
	imported royal jelly samples (mean \pm S.E).	
	Frequency (%) of microorganisms (bacteria, fungi and	
11	yeasts) in royal jelly produced from honeybee colonies,	
		118
	local royal jelly and imported royal jelly samples	
	collected from Egyptian market	

LIST OF FIGURES

No.		Page
1	Percentage of moisture in royal jelly samples produced from honey bee colonies fed on different extracts of (sugar bush, moringa and coriander),	63
2	honey syrup and plain sugar syrup. Percentage of soluble sugars (T.S.S and T.R.S) (%) in royal jelly samples produced from honey bee colonies fed on different extracts of (sugar bush, moringa and coriander), honey syrup and plain sugar syrup.	64
3	Protein percentage in royal jelly samples produced from honey bee colonies fed on different extracts of (sugar bush, moringa and coriander), honey syrup and plain sugar syrup.	66
4	Free amino acid percentage in royal jelly samples produced from honey bee colonies fed on different extracts of (sugar bush, moringa and coriander), honey syrup and plain sugar syrup.	67
5	Lipids percentage in royal jelly samples produced from honeybee colonies fed on different extracts of (sugar bush, moringa, and coriander), honey syrup and plain sugar syrup.	68
6	Ash percentage in royal jelly samples produced from honey bee colonies fed on different extracts of (sugar bush, moringa, and coriander), honey syrup and plain sugar syrup.	58
7	a, b and L. value for royal jelly samples produced from honey bee colonies, local royal jelly and imported royal jelly collected from Egyptian market	72