ASSESSING NUCLEIC ACID TESTING VERSUS ELISA FOR BLOOD VIRUSES DETECTION IN SOME BLOOD BANKS

Submitted By Nanis Salah El Dien Attia El Attar

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 2003

Master in Clinical Pathology, Faculty of Medicine, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Medical Sciences
Institute of Environmental Studies and Research
Ain Shams University

2019

APPROVAL SHEET

ASSESSING NUCLEIC ACID TESTING VERSUS ELISA FOR BLOOD VIRUSES DETECTION IN SOME BLOOD BANKS Submitted By

Nanis Salah El Dien Attia El Attar

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 2003 Master in Clinical Pathology, Faculty of Medicine, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment
Of The Requirement for the Doctor of Philosophy Degree
In Environmental Sciences

Department of Environmental Medical Sciences
This thesis Towards a Doctor of Philosophy Degree in
Environmental Sciences Has been Approved by:

Name
Signature

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Environmental Medicine & Community -

Department of Environmental Medical Sciences-

Institute of Environmental Studies & Research- Ain Shams University

2-Prof. Dr Hala Ibrahim Awad Allah

Prof. of Environmental Medicine & Community

Head of Department of Environmental Medical Sciences

Institute of Environmental Studies & Research- Ain Shams University

3-Prof. Dr. Magda Ibrahim Mohamed El Mahdy

Prof. of Clinical Pathology- Faculty of Medicine (Girls)

Al-Azhar University

3-Prof. Dr. Mona Helmy Youssef

Prof. of Clinical Pathology

Faculty of Medicine (Girls)

Al-Azhar University

ASSESSING NUCLEIC ACID TESTING VERSUS ELISA FOR BLOOD VIRUSES DETECTION IN SOME BLOOD BANKS

Submitted By Nanis Salah El Dien Attia El Attar

M.B.B.Ch., Faculty of Medicine, Ain Shams University, 2003

Master in Clinical Pathology, Faculty of Medicine, Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Doctor of Philosophy Degree In Environmental Sciences

Department of Environmental Medical Sciences Under The Supervision of:

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Environmental Medicine & Community
Department of Environmental Medical Sciences
Institute of Environmental Studies & Research
Ain Shams University

2-Prof. Dr. Magda Ibrahim Mohamed El Mahdy

Prof. of Clinical Pathology Faculty of Medicine (Girls) Al-Azhar University

Acknowledgement

First, and format, my deepest gratitude and thanks should be offered to **ALLAH**, the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr. Mostafa Hasan Ragb** Professor of Community, Environmental and Occupational
Medicine Institute of Environmental Studies and Researches, Ain Shams
University, for his great supervision, valuable advice and unlimited help to
provide all facilities to accomplish this work.

I find no words by which I can express my deepest thanks to **Prof. Dr. Magda Ebrahim Mohamed El Mahdy** of Clinical Pathology, Faculty of Medicine (girls), Al Azhar University, for her meticulous supervision, appreciated efforts and valuable assistance through over this work.

Manis Salah

ABSTRACT

INTRODUCTION: Transfusion-transmissible viral infections. such as hepatitis C, hepatitis B, and human immunodeficiency viruses, remain a major public health problem in developing countries. Nucleic acid testing is a molecular technique for screening blood donations to reduce the risk of transfusion transmitted infections in the recipients, thus providing an additional layer of blood safety. The ABO blood group has been previously found to be associated with the risk of several malignancies, including gastric cancer, pancreatic cancer, ovarian and skin cancer. Many studies have been performed to determine relationship between infectious diseases and blood groups. AIM OF **THE WORK**: To assess the importance of implementing NAT assay to detect donors during window period which are not detected with Enzyme-linked immunoassay and to distinguish the possible relation of viral infection with ABO blood groups and Rh system (if any). **SUBJECTS AND METHODS**: This cross sectional study was conducted at the Egyptian Abbassia regional Blood Transfusion center at Abbassia, Cairo. Blood donation collected from 10000 voluntary donors from January 2016 to June 2016 and tested with both ID NAT and ELISA assays for HBV, HCV and HI, also ABO group, Rh type **RESULTS**: NAT testing has the potential to detect viral nucleic acids of HIV 1-2, HBV, and HCV earlier than current screening methods, also hepatitis C and B were found to be higher in donors who has blood group O (43.3%, 44%) \and lowest in donors who has blood group AB (6.7%, 3.2%) **CONCLUSION**: NAT screening for three viruses has improved blood safety.. Also seroprevalence of HBs Ag and HCV Ab were found to be higher in donors who has blood group O and lowest in blood group AB donors, while the distribution of Rh in hepatitis infections was higher between Rh positive donors.

List of Contents

Title	Page No.
Introduction	۲
Aim of the Work	5
Review of Litrature	
Chapter (1) Transfusion Transmitted Infections (7	Γ TI s) ^Λ
Chapter (2) Screening assays for blood-borne viru	uses30
Chapter (3) Blood Groups System	54
Subject and Methods	58
Results	84
Discussion	102
Summary and Conclusion	111
Recommendations	115
References	117
Appendix	133
Arabic Summary	

List of abbreviations

Ab : Antibody

AE : Acridinium ester

Ag : Antigen

AIDS : Acquired immunodeficiency diseases

ALT : Alanine aminotransferase

Anti- HBe : HBV entire antibody

Anti-HBc : HBV core antibody

Anti-HBs : HBV surface antibody

Anti-HCV : HCV antibody

Anti-HIV : HIV antibody

bDNA : Branched DNA

BTS : Blood transfusion service

CDC : Center for Disease Prevention &control

CLIAs : Chemiluminescent immunoassays

DKA : Dual Kinetic Assay

DNA : Deoxyribose nucleic acid

EIAs : Enzyme immunoassays

ELISA : Enzyme-linked immunoassay

Gp : Glycoprotein

HA assay : Haemagglutination assay

HAV : Hepatitis A virus

HBcAg : Hepatitis B core antigen

HBeAg : HBV entire antigen

HBsAg : Hepatitis B surface antigen

HBV : Hepatitis B virus

List of abbreviations(Cont..)

HCV : Hepatitis C virus

HIV : Human immunodeficiency virus

HPA: hybridization protection assay

IAS : Immunoassays

IC : Internal control

ICTV : International Committee on Taxonomy of Viruses

ID NAT : Individual NAT

ISBT : International Society of Blood Transfusion

MMWR : Mortality and morbidity weekly report

MP NAT : Mini pool NAT

MP : Mini pool

NANB : Non-A, non-B

NASBA : Nucleic acid sequence based amplification

NAT : Nucleic acid amplification technology

NBTC : National Blood Transfusion Center

OBI : Occult HBV infection

PA assays : Polyagglutination assays

PCR : Polymerase Chain Reaction

RBCs : Red blood cells

Rh : Rhesus

RLU: Reported as Relative Light Units

RNA : Ribose nucleic acid RNAP : RNA polymerase

SPSS : Statistic package for social science program

TTIs : Transfusion transmitted infections

List of abbreviations(Cont..)

TMA : Transcriptation mediated amplification

TTVs : Transfusion transmitted viruses

WB : Western blot

WHA58 : WHO Health Assembly 58

WHO : World Health Organization

WNV : West Nile Virus

WP : Window period

List of Tables

Table.	No.			T	itle			Page No.
Table	(1):	The	Hepatitis	В	Virus	Serological	and	Virological
Mar	kers							15
Table	(2): S	ize ar	nd main fu	nctio	on of H	CV proteins,	mole	cular weight
(MV	V) in I	kiloda	lton (kd)					23
Table ((3): C	ompa	rison of HI	V sj	pecies:.			25
						s of ELISA te		
Table ((5): A	dvant	ages and d	isad	vantage	s of NAT tes	ting:	52
Table ((6): E	LISA	reagents					72
Table ((7): N	AT is	reagents					77
Table ((8): F	inal re	lease form					81
Table ((9):De	emogr	aphic featu	res	of total	10000 donor	·s:	84
Table ((10):]	Medic	al history o	of do	onors			87
Table	(11):	Incide	nce of blo	od	borne v	riruses in rea	active	samples by
ELI	SA							91
Table	(12):I	ncide	nce of HC	V, F	IBV and	d HIV reactiv	ve case	es according
to go	ender:	• • • • • • • • • • • • • • • • • • •						92
Table	(13):I	ncide	nce of HC	V, F	IBV and	d HIV reactiv	ve cas	es according
to ag	ge gro	oup						93
Table ((14):	NAT	discrimina	tory	results			95
Table	(15):	Incid	ence of H	BV,	HCV	and HIV fal	se rea	ctive results
(rea	ctive 1	ELIS <i>A</i>	A and nega	ive	NAT):			96
Table	(16):	Comp	arison be	twee	en bloc	od groups i	n Hea	althy Blood
Don	ors ar	nd hep	atitis B &	Ср	ositive p	oatients:		98
						in hepatitis		
patio	ents							100

List of Figures

Fig. No.	Title	Page No.
Figure (1): Structure of HBV		14
Figure (2): Hepatitis B viral ar	ntigens and antibodies of	detectable in the
blood following acute infecti	on	17
Figure (3): Hepatitis B viral an	ntigens and antibodies of	detectable in the
blood of a chronically infected	ed person	19
Figure (4): HCV RNA		22
Figure (5): Serologic profile of	Hepatitis C infection	24
Figure (6): Diagram of HIV vir	ion	27
Figure (7):A generalized graph	of the relationship betw	een HIV copies
(viral load) and CD4 counts	s over the average cour	rse of untreated
HIV infection; any particula		•
considerably		
Figure (8): Algorithm for blood	I screening	33
Figure (9): Direct ELISA diagram	am	39
Figure (10): Sandwich Elisa		39
Figure (11): NAT reduces the v	vindow period	43
Figure (12): Transcription Med	iated Amplification	45
Figure (13): ABO blood group	system	55
Figure (14):DG Gel ABO/Rh C	CARD	63
Figure (15): ELISA plate 96 mi	icrowell kits	64
Figure (16): NAT Testing		73
Figure (17): NAT steps		74
Figure (18): NAT reagents		78
Figure (19): NAT fluids		78
Figure (20): NAT results form.		80
Figure (21):Pie chart age distrib	oution of study group	85
Figure (22):Pie chart gender dis	stribution of study group)85

List of Figures(Cont..)

Fig. No.	Title	Page No.
Figure (23):Pie chart previo	ously donation distribu	ution of study group.86
Figure (24): Bar chart medi	ical history of donors.	88
Figure (25): Bar chart ne NAT testing	-	_
Figure (26): Pie chart Sero of study group	C	
Figure (27): Bar chart the in	ncidence of HCV and	HBV infection91
Figure (28):Incidence of He to gender.		•
Figure (29):Incidence of He to age group.		•
Figure (30): Bar chart the p	orevalence of HCV and	d HBV NAT yield95
Figure (31):Incidence of It (reactive ELISA and neg		
Figure (32):Number of bl hepatitis B & C pos groups	itive patients accord	ding to ABO blood
Figure (33): Number of case according to Rh-D positi	ve and Rh-D negative	
donors	•••••	100

Introduction

Introduction

The goal of any transfusion service is to provide adequate and safe blood and blood products that meet the needs of patients. Transfusion transmitted infections (TTIS) is a recognized complication of blood transfusion and blood products. Many of these infectious agents may cause lifetime morbidity and/or mortality. The three major TTIs of viral origin associated with blood transfusion are human immunodeficiency virus (HIV), hepatitis C virus (HCV) and hepatitis B virus (HBV) (*Gwarzo*, 2009).

Nucleic acid testing (NAT) is a molecular technique for screening blood donations to reduce the risk of TTIs in the recipients, thus providing an additional layer of blood safety (*Roth et al.*, 2012).

NAT technique is highly sensitive and specific for viral nucleic acids. It is based on amplification of targeted regions of viral ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). It detects them earlier than the other screening methods thus, narrowing the window period of HIV, HBV and HCV infections. NAT also adds the benefit of resolving false reactive donations on serological methods which is very important for donor notification and counseling (Yaseen et al., 2013).

In the last few decades through an awareness of TTIs, a majority of countries have mandated serology based blood screening assays for HIV, HCV, and HBV. However, despite improved serological assays, the transfusion transmission of HTV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP) (*Shyamala*, 2014). The WP is that period of time from infection to the time of detection by a given blood screening assay (*Weusten et al.*, 2011).

During this period, the risk of infection in donated blood can be missed by the immunoassay testing. These undetected WP infections are responsible for most of the transfusion transmission of these viruses (*Chigurupati and Murthy, 2015*). NAT shortens this window period, thereby offering blood centers a much higher sensitivity for detecting viral infections. For example, with serology tests, it takes about two months after infection for anti-HCV antibodies to be detected, while NAT testing can detect HCV RNA in about five days after infection (*Agarwal et al. 2013*).

NAT is a highly sensitive and advanced technique which has reduced the WP of HBV, HCV, HIV but it is highly technically demanding, involving issues of high costs, dedicated infrastructure facility, equipments, consumables and technical expertise. The need for NAT depends on the prevalence and incidence rate of infections in blood donor population, available resources and the evidence of benefit added when combined with serology tests. Hence the decision of starting NAT should be considered when basic quality assured blood transfusion system is already in place such as volunteer base for blood donation, provision of donor self-deferral, donor notification and counseling along with quality assured sensitive serological methods for testing TTIs (*Hans and Marwaha*, 2014).

The ABO blood group has been previously found to be associated with the risk of several malignancies, including gastric cancer, pancreatic cancer, epithelial ovarian and skin cancer (*Shim et al.*, 2015).

Many studies have been performed to determine relationship between infectious diseases and blood groups (*Aljooani et al.*, 2012).

Among infectious disease, HIV, and Hepatitis viruses are of great concern because of their prolonged viraemia and carrier or latent state. They also cause fatal, chronic and life-threatening disorders (*Ali and Fathallah*, 2014).