بسم الله الرحمن الرحيم

قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْحَالِيمُ الْحَكِيمُ الْحَكِيمُ

صدق الله العظيم سورة البقرة الآية (32)

Efficiency Of Diode Laser Use On Cleaning And Bonding To Root Canal Dentin

A thesis submitted to the Faculty of Dentistry, Ain Shams
University, in partial fulfillment of requirements for
Doctorate Degree in Endodontics

By

Nawar Muhammad Naguib Muhammad Nawar

M.Sc. in Endodontics - Faculty of dentistry

Ain Shams University (2014)

Supervisors

Prof. Dr. Ehab El-Sayed Hassanien

Professor of Endodontic

Faculty of Dentistry

Ain Shams University

Prof. Dr. Abeer Abdel-Hakeem El-Gendy

Professor of Endodontic

Faculty of Dentistry

Ain Shams University

Acknowledgement

First of all thanks to almighty Allah the most kind and most merciful.

I wish to express my deepest gratitude and sincere appreciation to Prof. Dr. Ehab Hassanien Professor of Endodontic Faculty of Dentistry Ain Shams University. Her guidance and collaboration helped me to overcome the obstacles and difficulties that arose along the way until my thesis got completed.

I would like to thank Prof. Dr. Abeer El-Gendy professor of Endodontic Faculty of Dentistry Ain Shams University for offering me much of her time, effort and support throughout the whole work. I can not believe how patient she was.

Nawar Muhammad Naguib

Dedication

I would like to dedicate my Doctorate thesis to my Wife, you were my motive .. my support .. a single word from you was always enough to refill my morale and revive my drained soul ..

I would like to dedicate it also to my Mother and my Father, thanks for everything

List of Contents:

List of figures	ii
List of tables	vii
List of abbreviations	ix
Introduction	1
Review of literature	4
 Root canal cleanliness and laser	
Aim of the study	54
Materials and methods	55
I) Materials and devices	55
II) Methods	58
 Phase one	
Results	89
Discussion	142
Summary and Conclusion	164
References	169
Arabic summary	**

Figure No.	Title	
1	Biolase device	
2	The Biolase E2 tip used in the study	
3	Apical foramen sealed with composite (left), then two layers of nail polish applied (right)	
4	Schematic of part I of phase I: evaluating disinfection	61
5	Laser activation	64
6	Schematic of part II of phase I: evaluating smear layer removal	
7	Longitudinal Section of the tooth with spots denoting drilling sites for sample collection 6	
8	Pipette	
9	Serial dilution	
10	Uninoculated Bile Aeuscelin agar plate 6	
11	Inoculated Bile Aeuscelin agar plate from the positive control group	
12	Longitudinal sectioning of the root ready for smear layer examination 71	
13	Gold sputtering of samples for scanning electron microscope examination 72	
14	Scanning Electron Microscope 72	
15	Schematic of Phase two	76
16	Isomet machine used in creating horizontal sections 8	
17	Verifying the thickness of slices 81	
18	Loading in Push out test	82
19	Measuring the surface area under microscope	82
20	Apical, middle and coronal slices of a sample obturated using AH plus after ultrasonic activation	

Figure No.	Title		
21	Apical, middle and coronal slices of a sample obturated	83	
	using EndoSequence after ultrasonic activation	03	
22	Apical, middle and coronal slices of a sample obturated	83	
22	using AH plus after laser activation	03	
23	Apical, middle and coronal slices of a sample obturated	83	
23	using EndoSequence after laser activation	63	
24	Longitudinal sectioning of the filled root	84	
25	Maximum gap width as a function of sealer adaptation	85	
26	Setting the scale of the Image J software		
27	Void highlighted and being analyzed		
28	Software generates the surface area in microns		
29	Bar chart showing the mean Log 10 (CFU/ml) for	91	
29	different tested activation methods		
30	Bar chart showing the mean Smear Layer score results for	30	
30	different activation methods	30	
	Bar chart showing the mean Smear Layer score		
31	results for different activation methods with different	95	
	thirds		
	Open dentinal tubules in the coronal third of a sample		
32	from group I (Ultrasonic activation)	96	
	Open dentinal tubules in the coronal third of a sample		
33	from group II (Diode laser activation)	96	
	Patches of heavy smear layer in the middle third of a		
34	sample from group I (Ultrasonic activation)	97	
	Patches of heavy smear layer in the middle third of a		
35	sample from group II (Diode laser activation)	97	
	5 1 \ 1 \ 1 \ 1 \ 1		

Figure No.	Title	
36	Open dentinal tubules in the apical third of a sample from	98
	group I (Ultrasonic activation)	
37	Open dentinal tubules in the apical third of a sample from	98
	group II (Diode laser activation)	
38	Bar chart showing the mean push-out results for different	101
	activation method	101
38	Bar chart showing the mean push-out results for different	95
30	used sealers	
39	Bar chart showing the mean push-out results for different	103
37	activation methods	103
40	Bar chart showing the mean push-out results for different	105
40	used sealers	103
41	Bar chart showing the mean push-out results for AH Plus	107
41	in different root canal thirds	107
42	Bar chart showing the mean push-out results for	109
42	EndoSequence in different root canal thirds	109
42	Slice from group IA-1, Ultrasonic activation and AH Plus	110
43	as the sealer used, showing perfect adhesive failure	110
	Slice from group IB-1, Ultrasonic activation and	
44	EndoSequence as the sealer used, showing perfect	110
	adhesive failure	
	Slice from group IIA-1, Diode laser activation and AH	
Plus as the sealer used, showing perfect adhesive fai		111
	Slice from group IIB-1, Diode laser activation and	
46	EndoSequence as the sealer used, showing perfect	111
	adhesive failure	

Figure No.	Title			
	Bar chart showing the mean of (maximum gap width)			
47	results for different used variables	114		
	Bar chart showing the mean of (maximum gap width)			
48	results for different activation method			
	Bar chart showing the mean of (maximum gap width)			
49	results for different used sealers	120		
	Bar chart showing the mean Gap Formation results with			
50	AH Plus for different activation methods within different	122		
	root halves			
	Bar chart showing the mean Gap Formation results with			
51	EndoSequence for different activation methods within	124		
	different root halves			
	Maximum gap width in a sample from subgroup IA-2			
52	(Tooth 4)	125		
	Maximum gap width in a sample from subgroup IB-2			
53	(Tooth 4)	125		
	Maximum gap width in a sample from subgroup IIA-2			
54	(Tooth 10)	126		
	Maximum gap width in a sample from subgroup IIB-2			
55	(Tooth 8)	126		
33	Bar chart showing the mean Maximum Gap Area (µm²)	120		
56	results for different variables	129		
	Bar chart showing the mean Gap Area (μm²) results for	100		
57	different activation methods	132		

Figure No.	Title	
58	Bar chart showing the mean Gap Area (μm^2) results for different used sealers	135
59	Bar chart showing the mean Gap Area (μm^2) results of AH Plus for different sections tested for both irrigation activation methods	137
60	Bar chart showing the mean Gap Area (µm²) results of EndoSequence for different sections tested for both irrigation activation methods.	139
61	Sample from group IA-2 with void surface area: 0.976 μm^2	140
62	Sample from group IB-2 with void surface area: 1.804 μm^2	140
63	Sample from group IIA-2 with void surface area: 0.685 μm^2	141
64	Sample from group IIB-2 with void surface area: 1.780 μm^2	141

Table No.	Title	Page No.
1	Smear layer scoring.	
2	Maximum, minimum and mean CFU count for different activation methods	
3	Mean and SD for the Log 10 (CFU/ml) for different activation methods	
4	Mean and SD for Smear Layer score results for different activation methods	93
5	Mean and SD for Smear Layer score results for different root thirds	95
6	Mean, SD & rank for push-out results for tested groups	100
7	Mean and SD for push-out results for different activation methods	103
8	Mean and SD for push-out results for different used sealers	105
9	Mean and SD for bond strength results of AH Plus for the three thirds with different activation methods	107
10	Mean and SD for bond strength results of EndoSequence for the three thirds with different activation methods	109
11	Mean, SD & Rank of maximum Gap width results for tested groups	114
12	Mean and SD for Max Gap width results for different activation methods.	117
13	Mean and SD for Maximum Gap width results for different used sealers.	120
14	Mean and SD for maximum gap width results with AH Plus for different tested levels	122

Table No.	Title			
15	Mean and SD for maximum gap width results with EndoSequence for different tested sections			
16	Mean and SD for Maximum Gap Area (µm²) results for tested groups			
17	Mean and SD for Gap Area (μm²) results for different activation methods			
18	Mean and SD for Gap Area (μm²) results for different used sealers			
19	Mean and SD for Gap Area (µm²) results with AH Plus for different tested sections			
20	Mean and SD for Gap Area (μm²) results with EndoSequence for different tested sections	139		

Full form	Abbreviation
Cemento Enamel Junction	CEJ
Laser Activated Irrigation	LAI
Passive Ultrasonic Irrigation	PUI
Bioceramic Sealer	ВС
Ethylenediaminetetraacetic acid	EDTA
Sodium hypochlorite	NaOC1
Colony Forming Unit	CFU
Scanning Electron Microscope	SEM

Introduction

Endodontic therapy is quite complex. Each clinical situation is unique, but the final objective remains identical: preserving the natural tooth in a functional, asymptomatic and aesthetic manner. This objective is not always easy to reach, and depends upon numerous factors among which the most important is probably the root canal disinfection.

The sequence of procedures may vary in complexity between cases but the aim remains eliminating pulp infection and preventing future microbial invasion.

Conventional procedures of endodontic treatment using mechanical tools and disinfectant agents. Even with the use of these conventional tools and agents, around 30% of the root canal's surface area remains covered in smear layer that protects bacteria in the dentinal tubules against intra-canal disinfection agent ⁽¹⁾. Also Intra-canal medicaments have a limited anti-bacterial spectrum and a limited ability to diffuse into the dentinal tubules. These all disadvantages can lead to failure of the endodontic treatment.

Different Lasers have shown promising results with many advantages over conventional methods. Results suggest that laser combines photothermal and photoablation effects and thus can be utilized as an effective tool for the