

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPARTMENT

Maximizing DG Output Power Using Multilevel Transformerless Inverter

Submitted by **Ibrahim El-Sayed Ibrahim Saad**

A thesis submitted to the faculty of Engineering at Ain-Shams University in Partial fulfillment of the requirements for the Degree of Master of Science

In Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Naggar Saad

Professor

Faculty of Engineering

Ain-Shams University

Dr. Walid El-Khattam

Associate Professor

Faculty of Engineering

Ain-Shams University

CAIRO, EGYPT 2019

STATEMENT

This thesis is submitted to Faculty of Engineering, Ain Shams University in partial fulfillment of the requirement for the degree of Master of Science in Electrical Power and Machines Engineering.

The work included in this thesis was carried out by the author, at the Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University.

No Part of this thesis has been submitted for a degree or qualification at any other universities.

Signature

Ibrahim El-Sayed

Date: 9/5/2019

SUPERVISORS COMMITEE

Name: Ibrahim El-Sayed Ibrahim

Thesis Title: Maximizing DG Output Power Using

Multilevel Transformerless Inverter.

Degree: Submitted in partial fulfillment of the re-

quirements for M.Sc. degree in electrical

engineering.

Title, name and affiliation

Signature

1. Prof. Dr. Naggar Hassan Saad

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

2. Assoc. Prof. Walid El-Khattam

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

EXAMINERS COMMITTEE

Name: Ibrahim El-Sayed Ibrahim

Thesis Title: Maximizing DG Output Power Using

Multilevel Transformerless Inverter.

Degree: Submitted in partial fulfillment of the re-

quirements for M.Sc. degree in electrical

engineering

Title, name and affiliation

Signature

1. Prof. Noha Hany Yousry El-Amary

Professor of Electrical Power Engineering College of Engineering and Technology, Arab Academy for Science and Maritime.

2. Prof. Mostafa Ibrahim Mohamed Marei

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

3. Prof. Naggar Hassan Saad

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

4. Associate Prof. Walid Aly Seif El-Khattam

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

ACKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

Thanks, must go to Allah the creator of this universe who ordered us to study and explore his creations in order to know him better. However, as I come to understand more, I find that there is so much more knowledge to absorb and to get to grips.

I am honored to record my deepest sense of gratitude and thanks to **Professor Dr. Naggar Hassan**, for the efforts he had exerted to make it possible for me to make this research reality and for the help he gave, the many advices and the patience and the understanding he has shown throughout this work.

Thanks deeply grateful to **Professor Dr. Walid El-Khattam**, for the time and great help enlightened many points and efforts he had spent helping me during developing this thesis.

I would like to thank all staff members of faculty of engineering – Ain Shams University that will grant me the degree of Master of Science in Electrical Engineering.

Finally, there are no enough words to thank **my parents**, **my wife** and **my siblings** for the good family atmosphere, which helped in completing this thesis and encouragement during all time of hard work to complete it.

ABSTRACT

This thesis presents a new concept of single-phase grid connected PV system with unbalance controller algorithm. Different switching conditions according to the grid status have been discussed. New method of unbalance control and short circuit protection are proposed to make sure that the current and voltage values are within the unbalance limits which are a proper protection method to both PV system and the grid. The distribution system current profile can be properly regulated using adequate power management from the distributed inverters among the distribution network. System discretion with adequate simulation with a proposed distribution network connection is provided. The system can be applied easily to all PV grid connected inverters and can be easily controlled either automatically or manually be the networks operators.

The study also includes the effects of PV penetration on the voltage's waveforms at different levels, 22KV,11KV and 380V.

Small scale energy sources are widely used; their high-level penetration impact can negatively affect the distribution network. In order to solve the three-phase unbalance problem and save it within limits, a new control topology is proposed, this topology is based on switching the inverter output between the three phases according to the level of consumption. An adequate PQ controller with unbalance controller reference by detecting the highest error value in order to adjust the inverter output according to the status of the defected phase are presented. The synergy between the multilevel inverter topology and this unbalance controller with adequate PQ controller would be the major enhancement in PV single phase systems. This controller can be used in order to make a proper enhancement and improvement to the smart grid technology applications and also to the overall distribution power system.

An unbalance controller is presented using the theory of highest current (highest consumption) detection in order to drive the inverter to inject its output on it to reach the balance state, or at least decrease the unbalance limit. In additional, short circuit protection is done by checking the voltages magnitudes and make a fast comparison to make sure that the differences are within limits and are not severe differences result from short circuit error on the grid.

An adequate single-phase PQ controller is presented which depends on creating an imaginary 3 phases from single phase voltage and current by shifting the single phase 90° on the space in order to perform parks transformation. Simulation results using Matlab/Simulink are presented.

It has been noticed that single phase PV systems can reduce the unbalance limit and reach to the balance state especially in small scale networks. Also there were no changes noticed at the voltage waveforms at all levels due to the PV penetration.

Contents

Chapte	er1: Electricity Generation Renewable Resources	17
1.1	Introduction	17
1.2	DG Technologies and Types	18
1.3	Distribution Systems	21
1.3.1	Radial Distribution System (RDS)	21
1.3.2	Primary Loop Distribution System (PLD)	22
1.4	Three Phase Unbalance Problem Statement	23
1.5	Thesis Objectives and Scope of Work	24
1.5.1	Thesis Objectives	24
1.5.2	Scope of The Thesis Work	26
Chapte	er 2: LITERATURE REVIEW	27
2.1	Multilevel Inverter	27
2.2	P-Q Control	32
2.3	Distribution Network Communication Types	38
2.4	Three Phase Unbalance due to PV Penetration	42
Chapte	er 3: IMPLEMENTED METHODS AND DEVELOPED	
CONTI	ROLS	50
3.1	Introduction	50
3.2	PN-NPC Multilevel Inverter Scheme	51
3.3	Unbalance Controller Algorithm	52
3.4	Short Circuit Detection and Fast Action	59
3.5	P-Q and Power Management Control	60
3.6	P-Q Optimization Technique	62

Chapte	er 4: Simulation Results	65
4.1	Inverter Control Startegy	65
4.2	Unbalance Problem Solving Anaylisis	68
4.3	Up Normal Switching Conditions	71
Chapte	er 5: Copmarison Between Full and Half Wave Bridge	
Invete	rs In Solving The Unbalance Problem	75
5.1	Full Wave Inverter Implementation	75
5.1.1	Full Wave Inverter Structure	75
5.1.2	Unbalance Case	76
5.1.3	Inverter Output Voltage	76
5.1.4	Inverter Output Current	77
5.1.5	Solving Unbalance Problem	77
5.2	Half Wave Inverter Implementation	78
5.2.1	Unbalance Case	78
5.2.2	Inverter Output Voltage	79
5.2.3	Inverter Output Current	79
5.2.4	Solving Unbalance Problem	80
5.3	Comparison Between Half And Full Wave Bridge Inverter	s80
Chapte	er 6: Applyin The Controllers to A Larger System	
Model.		81
6.1	System Under Study	82
6.2	Case 1: Unbalance at Bus AA9	82
6.3	Case 2: Unbalance at Bus AA13	85

Chapter	7: Summary and Conclusions	87
7.1	Summary	.87
7.2	Conclusions	.88
7.3	Future Works	.88
References89		89

List of Tables

Table 2.	1 Comparison of power losses- NPC topologies
Table 2.2	2 Comparison of number of power switches- NPC topologies31
Table 2.3	Comparison of PV penetration impacts45
Table 5.	1 Comparison between Full and half wave inverters79
List	of Figures
Fig 1.1	Possible combinations of DGs
Fig 1.2	Common mode voltage phenomenon3
Fig 1.3	A radial distribution system6
Fig 1.4	A primary loop distribution system6
Fig 2.1	Grid friendly control scheme based on P-Q controller18
Fig 2.2	A Power line communication scheme
Fig 2.3	Coordination of two-way communication algorithm14
Fig 2.4	Petra communication system overview26
Fig. 2.5	Feeder reconfiguration approach32
Fig 3.1	PN-NPC multilevel inverter structure36
Fig 3.2	Comparison between NPC devices losses37
Fig 3.3	An overall electric power system and its distribution system38
Fig 3.4	Architecture of intelligent control agents40
Fig 3.5	Proposed unbalance controller flowchart40

Fig 3.6	Unbalance controller scheme	11
Fig 3.7	Power line communication structure	43
Fig 3.8	Protection controller scheme	14
Fig 3.9	Proposed P-Q controller flowchart	45
Fig 3.10	P-Q controller Scheme.	46
Fig 3.11	PSO algorithm result.	48
Fig 4.1	Proposed inverter strategy	50
Fig 4.2	Positive half cycle path	51
Fig 4.3	Positive freewheeling path	51
Fig 4.4	Negative half cycle path	.52
Fig 4.5	Negative freewheeling path	53
Fig 4.6	Inverter output voltage form	53
Fig 4.7	Distribution network example	54
Fig 4.8	Three phase currents (Balanced)	54
Fig 4.9	The defected phase (Phase2)	.55
Fig 4.10	Inverter output on defected phase	55
Fig 4.11	Current correction after inverter switching	56
Fig 4.12	Current variations according to load variations	.57
Fig 4.13	Current correction.	58
Fig 4.14	Double injection into the defected phase	59
Fig 4.15	Overvoltage on the defected phase	59
Fig 4.16	Solving overvoltage problem	60

Fig 5.1	Full wave inverter structure61
Fig 5.2	Unbalance case (Full Wave)62
Fig 5.3	Full wave inverter output voltage62
Fig 5.4	Full wave inverter output current63
Fig 5.5	Balanced three phase63
Fig 5.6	Half wave inverter structure64
Fig 5.7	Unbalance case (Half Wave)64
Fig 5.8	Half wave inverter output voltage65
Fig 5.9	Half wave inverter output current65
Fig 5.10	Balanced three phase66
Fig 6.1	Large system model67
Fig 6.2	Unbalance at bus AA9
Fig 6.3	Balance at bus AA968
Fig 6.4	Voltage waveform at 220V level69
Fig 6.5	Voltage waveform at 11KV level69
Fig 6.6	Voltage waveform at 22KV level70
Fig 6.7	Unbalance at bus AA1370
Fig 6.8	Balance at bus AA1371

List of Abbreviations

CM Common Mode

CHR Chien Hrones Reswick

DG Distributed Generator

DPC Direct Power Control

FB-DCBP Full Bridge with DC Bypass

HV High Voltage

IEC International Electro-technical Commission

NPC Neutral Point Clamp

OLTC ON Load Tap Changer

OH5 Inverter Switching Strategy

PCC Point of Common Coupling

PLC Power Line Communication

PLD Primary Loop Distribution

PWM Pulse Width Modulation

PLL Phase Locked Loop

PVU Percentage Voltage Unbalance

PN-NPC Positive-Negative Neutral Point Clamp

P-Q Active and Reactive Power

PID Proportional Integral Differential Controller

PSO Particle Swarm Optimization

PV Photovoltaic

RES Renewable Energy Source

RDS Radial Distribution System

SI-NPCTLI Split Inductor Neutral Point Clamp Transformerless

Inverter

SPMW Sinusoidal Pulse Width Modulation

TSO Transmission System Operator

THD Total Harmonic Distortion

TLI Transformerless Inverter

VFU Voltage Unbalance Factor

WT Wind Turbine

WF Wind Farm

WG Wind Generation