Predictors of cardiac conduction disturbances after transcatheter aortic valve implantation using self-expandable valves

Thesis submitted for partial fulfillment of MD degree of cardiology by

MAHMOUD MOHAMED ALI BARAKA

M.B., B.ch, M.Sc cardiology

Under supervision of **Doctor/ Maiy Hamdy El-Sayed**Professor of cardiology – Ain Shams University

Doctor/Ahmad El-Sayed Yousef
Associate professor of cardiology
Ain Shams University

Doctor/ Diaa El-Din Ahmed KamalLecturer of cardiology— Ain Shams University

Cardiology department – Faculty of medicine Ain Shams University 2019

Acknowledgement

First and foremost, I thank Allah for all blessings I have and for helping me in accomplishing this work.

I would like to express my sincere gratitude to *Dr. Maiy Handy El sayed*, professor of cardiology, for her precious time, great help and faithful advice. Really, wordings can never express my deep appreciation for her effort and care.

Here comes the turn to refer the right to whom it belongs; *Dr.*Ahmad El Sayed, associate professor of cardiology, and *Dr.* Diaa El

Din Kamal, lecturer of cardiology. This is actually their work and I have only arranged and presented the data. Wordings aren't enough to thank them for their valuable instructions and continuous assistance.

I should never forget to express my thanks to my colleagues in the cardiology department at Ain Shams University who helped me a great deal in collecting the data of the patients. I would also like to thank my wife and my family who gave me the enthusiasm to complete this work.

Mahmoud Baraka

Contents

Title Page No.

•	List of Abbreviations	i
•	List of Tables	<i>v</i>
•	List of Figures	viii
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	
-	The aortic valve complex and aortic stenosis	4
-	Conduction disturbances after TAVI	
•	Patients and Methods	
•	Results	58
•	Discussion	82
•	Limitations	91
	Conclusion	92
	Recommendations	93
	Summary	94
•	References	
•	. Appendix	
	Arabia Summam	

Tist of Abbreviations

All.	Full term
3D-TEE	Three dimensional transesophageal echocardiography
ACAD	Atherosclerotic Coronary artery diseases
ACC	American college of cardiology
AF	Atrial fibrillation
AHA	American heart association
AMI	Acute myocardial infarction
AR	Aortic regurgitation
AS	Aortic stenosis
AV block	atrioventricular block
AVA	Aortic valve area
AVAi	Aortic valve area indexed value
BAV	Balloon aortic valvuloplasty
BMI	Body mass index
BSA	Body surface area
CA	Coronary angiography
CABG	Coronary arteries bypass grafting
CAD	Coronary artery disease
CHB	Complete heart block
CI	Confidence interval
CT	Computed tomography
CVS	Cerebrovascular stroke
DA	Diagnostic accuracy
DI	Depth of implantation
DIi	Depth of implantation indexed value
DIMS	Percentage of depth of implantation from membranous septum
DLZ	Device landing zone

Tist of Abbreviations (cont.)

All.	Full term
DM	Diabetes mellitus
ECG	Electrocardiogram
EDD	End diastolic diameter
EDV	End diastolic volume
EF	Ejection fraction
EPS	Electrophysiological study
ESC	European society of cardiology
ESD	End systolic diameter
HTN	Hypertension
ICU-LOS	Intensive care unit length of stay
IHD	Ischemic heart disease
ILR	Implantable loop recorder
IV	Intravenous
IVC	Inferior vena cava
IVS	Interventricular septum
LA	Left atrium
LBBB	Left bundle branch block
LBBB	Left bundle branch block
LMCA	Left main coronary artery
LMCAi	Height of Left main coronary artery ostium indexed value
LV	Left ventricular
LVEDD	Left ventricle end diastolic diameter
LVEDDi	Left ventricle end diastolic diameter indexed value
LVEF	Left ventricular ejection fraction
LVESD	Left ventricle end systolic diameter
LVESD	Left ventricle end systolic diameter indexed value

Tist of Abbreviations (cont.)

All.	Full term
LVH	Left ventricular hypertrophy
LVOT	Left ventricular outflow tract
MDCT	Multidetector computed tomography
MI	Myocardial infarction
MPG	Mean pressure gradient
MR	Mitral regurgitation
MS	Membranous septum length
MSi	Membranous septum length indexed value
NPV	Negative predictive value
OR	Odd's ratio
PCI	Percutaneous coronary intervention
PET	Polyethylene terephthalate
PPG	Peak pressure gradient
PPI	Permanent pacemaker implantation
PPV	Positive predictive value
PVL	Paravalvular regurgitation
PWT	Posterior wall thickness
RA	Right atrium
RBBB	Right bundle branch block
RBCs	Red blood cells
RCA	Right coronary artery
RCAi	Indexed value of right coronary artery ostium height
RV	Right ventricle
RVSP	Right ventricle systolic pressure
SA node	Sinoatrial node
SAVR	Surgical aortic valve replacement

Tist of Abbreviations (cont.)

All.	Full term
SE	Standard error
SPSS	Statistical Package for the Social Sciences
STS	Society of thoracic surgeons
SVC	Superior vena cava
SWT	Septal wall thickness
SWTi	Septal wall thickness index value
TAVI	Transcatheter aortic valve implantation
TAVR	Transcatheter aortic valve replacement
TEE	Transesophageal echocardiography
THV	Transcatheter heart valve
TIA	Transient ischemic attack
TLOS	Total length of stay
TTE	Transthoracic echocardiography
VARC-2	Valve Academic Research Consortium-2
ViV	Valve-in-valve
YI	Youden Index
ΔMSID	Difference between membranous septum and depth of implantation

List of Tables

Table No.	Title Pa	ge Na.
Table (1):	Grades of aortic valve stenosis	23
Table (2):	Echocardiographic grading of aortic regurgitation.	48
Table (3):	Summary of studied parameters	52
Table (4):	Summary of studied outcomes	53
Table (5):	Demographic and Preprocedural clinical parameters	58
Table (6):	Preprocedural ECG and Echocardiographic parameters	59
Table (7):	Preprocedural CT parameters	60
Table (8):	Procedural parameters	61
Table (9):	Outcomes among studied cases	62
Table (10):	Relation between clinical parameters and occurrence of conduction disturbances.	63
Table (11):	Relation between ECG parameters and occurrence of conduction disturbances	64
Table (12):	Relation between Echocardiographic parameters and occurrence of conduction disturbances	65
Table (13):	Relation between CT parameters and occurrence of conduction disturbances	66
Table (14):	Relation between procedural parameters and occurrence of conduction disturbances.	67

List of Tables (cont...)

Table No.	Tizle	Page No.
Table (15):	Diagnostic performance of the significant parameters in predicting conduction abnormalities	g
Table (16):	Diagnostic characteristics of the significant parameters in predicting conduction abnormalities	g
Table (17):	Multivariate logistic regression analysis models	
Table (18):	Relation between procedural parameters and development of QRS widening	
Table (19):	Diagnostic performance of the significant parameters in predicting QRS widening	g
Table (20):	Diagnostic characteristics of the significant parameters in predicting QRS widening	g
Table (21):	Relation between the procedural parameters and occurrence of PF prolongation	₹
Table (22):	Diagnostic performance of the significant parameters in predicting QRS widening	g
Table (23):	Diagnostic characteristics of the significant parameters in predicting PF prolongation	₹

List of Figures

Fig. No.	Title Pag	je No.
Fig. (1):	Notes on the aortic valve and flow of blood within it,	
	with illustrative drawings conducted by Leonardo	
	Da Vinci during the last years of his life	5
Fig. (2):	Histology of the aortic valve complex and the	
	ventriculoarterial junction	7
Fig. (3):	Illustration of the three rings within the aortic valve	_
	complex	8
Fig. (4):	Image of the aortic root opened from the left ventricle.	10
Fig. (5):	Schematic illustration of the cardiac conduction	
8 (=)	system	13
Fig. (6):	Drawing of the triangle of Koch	
Fig. (7):	Drawing showing the anatomic landmarks of the	
	triangle of Koch	15
Fig. (8):	Schematic representation of the trifascicular bundle	
	branch system	17
Fig. (9):	Disease progression in calcific aortic stenosis	21
Fig. (10):	Natural history of symptomatic aortic stenosis	24
Fig. (11):	CT image showing the relationship between the AV	
	and the cardiac conduction system	
Fig. (12):	Grading of aortic valve calcification	30
Fig. (13):	Schematic of the Conduction System's Topographic	
	Anatomy and Its relation to the membranous	90
F. (14)	septum	32
Fig. (14):	Early and new-generation transcatheter aortic valves	33
Fig. (15):	Histograms showing the incidence of PPI using new	
g, (_0),	generation prostheses	34
Fig. (16):	Most frequently used prostheses after implantation	
3 . ,	and their relation to the adjacent structures	35
Fig. (17):	Strategies for the management of new onset LBBB	
_	(A) and high grade AV block (B)	40
Fig. (18):	CT-derived measurements of the aortic valve	
	annulus (Patient 25).	46

List of Figures (cont. .).

Fig. No.	Title Pa	ige No.
Fig. (19):	CT-derived measurements of the height of coronary	
Fig. (20):	ostea (Patient 37)CT axial view of the aortic valve showing different	
119. (20).	grades of valve calcification.	
Fig. (21):	CT coronal view showing different examples of	
_	basal septal calcification	48
Fig. (22):	CT coronal view showing length of membranous septum	
Fig. (23):	Fluoroscopy showing aortic root angiograms and measurement of depth of implantation	
Fig. (24):	Fluoroscopy showing aortic root angiograms and measurement of depth of implantation with Sapien XT valves	
Fig. (25):	Illustration showing the relation between depth	
	of implanatation and membranous septum	51
Fig. (26):	Outcomes among studied cases	
Fig. (27):	Relation between preprocedural parameters and	
T! (20)	development of conduction disturbances	
Fig. (28):	Relation between procedural parameters and development of conduction disturbances	
Fig. (29):	ROC curve for the significant parameters for	=0
Fig. (30):	predicting conduction disturbances	
	conduction abnormalities.	70
Fig. (31):	Fluoroscopy showing the effect of DI and DIMS on outcome in the same patient (<i>Patient 6</i>)	
Fig. (32):	Relation between CVS and QRS widening after TAVI	
Fig. (33):	Relation between DIMS and QRS widening after TAVI	
Fig. (34):	ROC curve for selected parameters for predicting QRS widening	

List of Figures (cont. .).

Fig. No.	Title	Page No.
T ! (0.T)		
Fig. (35):	Diagnostic characteristics of CVS and DIMS ≥62	
	% in predicting QRS widening	76
Fig. (36):	Relation between basal septal calcification and F	'n
_	prolongation.	77
Fig. (37):	Relation between ΔMSID and PR prolongation	
Fig. (38):	ROC curve for the significant parameters f	
	predicting PR prolongation	
Fig. (39):	Diagnostic characteristics of basal sept	_
_ -g : (/-	calcification and Δ MSID \leq 2.65 in predicting F	
	prolongation	

ABSTRACT

Background: The advent of transcatheter aortic valve implantation (TAVI) represented a paradigm shift for treating patients with severe symptomatic aortic stenosis (AS) who are at high or prohibitive surgical risk. With the growing experience in this field, the rate of periprocedural complications has decreased over time and TAVI has been increasingly performed with a minimalist approach, evolving into a safe procedure with predictable outcomes. However, unlike other procedural complications, the incidence of conduction disturbances which could be in the form of bundle branch blocks, or atrioventricular blocks, has failed to decrease in recent times, with reports suggesting an increased risk associated with the use of some newer-generation transcatheter valves.

Aim of the study: To determine the predictors of cardiac conduction disturbances after transcatheter aortic valve implantation.

Patients and Methods: From January 2017 to April 2019, we included 38 consecutive patients with severe symptomatic AS underwent TAVI using self-expandable valves (CoreValve or Evolut R) or the balloon expandable Sapien XT valve at the Ain Shams University Hospitals. All patients were subjected to electrocardiographic evaluation pre- and post-TAVI and at 30 days. Several parameters were studied including preprocedural parameters: clinical, electrocardiographic, echocardiographic, and CT derived parameters, and procedural parameters: type and size of the valve, the use of balloon pre- and post- implantation dilatation, and depth of implantation. All quantitative parameters were indexed to body surface area (BSA).

Results: Conduction disturbances were seen in 16 patients (42.1%), in which 10 patients (26.3%) experienced left bundle branch block (LBBB), 6 patients (15.8%) experienced complete heart block (CHB), with only one of them (2.6%) experienced permanent CHB requiring permanent pacemaker implantation (PPI). Multivariate logistic regression analysis for pre-procedural predictors showed that the presence of basal septal calcification is the most powerful independent predictor (OR: 98.73, 95% CI: 7.63 to 1278.23, p < 0.001). Multivariate logistic regression analysis for procedural predictors showed that the relationship between depth of implantation and membranous septum expressed in percentage (DIMS) with cut-off >75.00% is the most powerful independent procedural predictor (OR: 16.00, 95% CI: 2.12 to 120.65, p 0.007).

Conclusion: Conduction disturbances remain a common complication of TAVI. Presence of basal septal calcification is a risk factor that increase patient propensity for developing such complication after TAVI. The relationship between depth of implantation and membranous septum is a strong independent procedural predictor and prospective validation of its cut-offs is needed.

Key words: Transcatheter aortic valve implantation, conduction disturbances, AV blocks, LBBB.

Introduction

Aortic valvular diseases are common disorders affecting elderly with multiple co-morbidities. The most common type of aortic valvular disease is calcific aortic stenosis (AS) [1]. Despite efforts for developing medical therapies for patients with calcific AS, medical therapy has no role in modification of the course of the disease, specifically once symptoms become manifest, and surgical aortic valve replacement (SAVR) remain mainstay of definitive treatment [2]. However, and because aortic stenosis is generally disease of the elderly, co-morbidities are a frequent that may render them inoperable. A percutaneous procedure to aortic valve replacement is, therefore, an appealing alternative for many doctors and patients.

Percutaneous balloon aortic valvuloplasty has a limited role in treatment of calcific aortic stenosis, as results are not usually durable [3]. On the other hand, transcatheter aortic valve implantation (TAVI) has passed great steps in the treatment of severe AS in patients at high surgical risk or inoperable by surgery [4]. The first implantation by Alain Cribier in 2002 [5], since that, TAVI has become one of the dynamic fields for research, innovations and development.

Despite these benefits, the growing clinical experience with TAVI revealed several intra- and post-procedure unpleasant events. One of these complications is the occurrence of post-operative conduction disturbances, the most common are His' bundle branch

blocks, atrioventricular blocks, and need for permanent pacemaker implantation. With the frequency at 10% to even 50%, conduction abnormalities are now among the most important TAVI-related adverse events [6].

This study aims to determine the predictors for conduction disturbances after transcatheter aortic valve implantation in patients with severe calcific aortic stenosis.