

LIFE CYCLE ASSESSMENT OF SUSTAINABLE CONSTRUCTION

BY

ABDELRAHMAN AMEEN ABDELMONEM

B.Sc., Civil Engineering Mansoura University, 2013

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Dr. MONA MOSTAFA

Dr. MOHAMED EL-MIKAWI

Associate Professor in Structure Engineering Dept.

Faculty of Engineering – Ain Shams University

Associate Professor in Structure Engineering Dept.

Faculty of Engineering – Ain Shams University

Dr. AYMAN MOSALLAM

Professor of Civil & Environment Engineering.

The University of California-vine, (UCI)

2019

LIFE CYCLE ASSESSMENT OF SUSTAINABLE CONSTRUCTION

BY

ABDELRAHMAN AMEEN ABDELMONEM

B.Sc., Civil Engineering Mansoura University, 2013

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering Supervised by

Dr. MONA MOSTAFA

Associate Professor in Structure Engineering Dept. Faculty of Engineering – Ain Shams University

Dr. MOHAMMED EL-MIKAWI

Associate Professor in Structure Engineering Dept. Faculty of Engineering – Ain Shams University

Dr. AYMAN MOSALLAM

Professor of Civil & Environment Engineering. University of California, Ir-vine, (UCI)

2019

APPROVAL SHEET

Thesis: Master of Science in Civil Engineering (Structural)

Researcher Name: Abdelrahman Ameen AbdElmonem

Thesis Title: Life Cycle Assessment of Sustainable Construction

Examiners Committee	Signature
Prof. Manal Sayed Abdelhamid	
Professor in Construction and Project Management Research Institute Housing & Building National Research Center, HBRC	
Prof. Ali Sherif Abdelfayad	
Professor Structure Engineering Structural Engineering Dept. Faculty of Engineering –Ain Shams University Dr. MOHAMMED MIKAWI Associate Professor in Structure Engineering Structural Engineering Dept. Faculty of Engineering –Ain Shams University	
Dr. AYMAN MOSALLAM Professor of Civil & Environment Engineering. University of California, Ir-vine, (UCI)	

Thesis: Master of Science in Civil Engineering (Structural)

Researcher Name: Abdelrahman Ameen AbdElmonem

Thesis Title: Life Cycle Assessment of Sustainable Construction

Supervision Committee	Signature
Dr. Mona Mostafa	
Associate Professor in Structure Engineering,	
Structural Engineering Dept.	
Faculty of Engineering -Ain Shams University	
Dr. MOHAMMED MIKAWI	
Associate Professor in Structure Engineering	
Structural Engineering Dept.	
Faculty of Engineering -Ain Shams University	
Dr. AYMAN MOSALLAM	
Professor of Civil & Environment Engineering.	
University of California, Ir-vine, (UCI)	

STATEMENT

This thesis is submitted as partial fulfillment of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Student name	
Abdelrahman Ameen	
Signature	
Date:	Da

INFORMATION ABOUT THE RESEARCHER

Name: Abdelrahman Ameen AbdElmonem

Date of birth: 01 May 1991

Place of birth: Damietta City, Egypt

Email: Abdelrahman.ameen@hpd.com.eg

Mobile: 01012184774

Last academic degree: Bachelor of Science

<u>Field of specialization:</u> Structural Engineering

University issued the degree: Ain Shams

Date of issued degree:

Current job: Structural Engineer at Hyde Park Properties for Development,

Egypt.

ABSTRACT

Life cycle assessment (LCA) has become an essential tool to determine the environmental impacts of construction materials and products. LCA is a very effective strategy in analyzing the impact of different structures during its life cycle, considering economic, environmental, and sustainability aspects. The use of this technique helps structural engineers, contractors, and owners in predicting environmental impacts throughout the structure's life cycle. LCA is an essential tool which encourages civil and structural engineers to reduce the embodied energy of any structure. The major stages of LCA study are raw material acquisition, materials manufacture, production, use/reuse/maintenance, and waste management.

Recently, the Ministry of Housing and the Housing & Building National Research Center (HBRC) in Egypt have shown great attention to this topic. This is demonstrated by the establishment of the National Council for Housing Minister Green Architecture to develop policies that lead to the dissemination and application of the idea of green architecture. Nowadays, several manufacturers have developed a new technique called "3D panel system" (i.e., Enbuil panel system, EPS) which is recommended for low rise buildings (up to three stories height).

This research aims to emphasize the value added to the construction sector by using EPS during the construction phases.

A case study is used to demonstrate the benefits of the proposed system by comparing its environmental impacts with that of the traditional reinforced concrete system (materials/methods). The software ATHENA Impact Estimator is used to compute the environmental impacts for the two systems.

The study results related to the environmental impacts highlight that the EPS system is (70-80) % lower than the traditional system with a significant reduction in fossil fuel consumption by (70-85) %. A cost-time study is performed using Primavera software that concludes that the EPS system has lower cost and time impacts by 25% and 45%, respectively than the traditional system.

A cost-time study is performed using Primavera software concludes that the total initial cost of EPS system is approximately lowering than the cost of R.C. system by (20-25) %, as the amounts of reinforcement steel and cement of EPS system decrease of about 50 % and 32 % respectively, if compared to R.C. system. The study also indicated that a significant reduction in construction time with a range (45-60) % could be achieved when using the EPS system as an alternative to the traditional reinforced concrete/bricks system.

Keywords: Life cycle, Egyptian market, Environmental impacts, EPS system, 3D panel system.

ACKNOWLEDGMENTS

Thanks are due to GOD for the gracious and mercy of blessing me with patience and knowledge to finish this work.

The author would like to express his sincere gratitude to *Dr. Ayman Mosallam*, Professor of Civil & Environment Engineering.

University of California, Ir-vine, (UCI), for supervision, generous and intellectual support, encouragement, and advice throughout this research.

The author is indebted to *Dr. Mohammed Mikawi*, Assistant Professor of structure Engineering, Department of Structural Engineering, Faculty of Engineering, Ain Shams University and The author is grateful to *Dr. Mona Mostafa*, Assistant Professor of structure Engineering, Department of Structural Engineering, Faculty of Engineering, Ain Shams University for patient review of this manuscript.

I would like to thank the rest of the Thesis committee

Finally, I want to thank my family for their love, understanding, endless patience, and encouragement.

Abdelrahman Ameen Abdelmonem

Cairo, 2019

Contents	
STATEMENT	IV
ABSTRACT	1
ACKNOWLEDGMENTS	3
LIST OF FIGURES	8
LIST OF TABLES	11
LIST OF ABBREVIATION	12
INTRODUCTION	14
1.1. General	14
1.2. Problem statement	16
1.3. Research Objectives and Scope	16
	17
CHAPTER (2)	20
BACKGROUND AND LITERATURE REVIEW	20
2.1. Introduction	20
2.2. Sustainable development concept	20
	21
2.4. Life Cycle Assessment scope	22
2.5. Life Cycle Assessment Procedures	24
2.6. Life cycle assessment stages	25
2.6.1.	25
1	26
2.7.1. Acidification Potential	26
1	28
2.7.3. Stratospheric ozone depletion (ODP)	29
2.7.4. Smog potential	30
2.7.5. Global warming potential	31
2.7.6. Comparison of Human Health particulate by life cycle stage:	34
2.7.7. Fossil Fuel Consumption	35
v	35
2.8.1. The Buildings of Mud	36
2.8.2. Buildings of Sandbags	37
2.8.3. Sandwich Panel System	38
2.9. Related Researches Work:	40
CHAPTER (3)	48
INTERNATIONAL ENVIRONMENTAL ASSESSMENT RATING	
SYSTEMS WITH A COMPARISON BETWEEN THEM AND GREE	N
	48
	48
1 8	50
3.3. Building Research Establishment's Environmental Assessment	
Method (BREEAM)	57

3.3.1.	Background:	57
	BREEAM objective	57
3.3.3.	Assessment Categories	58
3.3.4.	BREEAM Scoring System:	60
3.3.5.	Assessment Process	60
3.4. C	CASBEE	62
3.4.1.	Background	62
3.4.2.	Assessment Categories	62
3.4.3.	Assessment Process	63
3.4.4.	CASBEE Objective	64
3.4.5.	CASBEE Scoring System	65
	EED	68
3.5.1.	Background	68
3.5.2.	Assessment Categories	68
3.5.3.	LEED Scoring System	69
3.5.4.	Assessment Process	70
3.5.5.	LEED Objective	70
3.6. G	GREEN STAR RATING SYSTEM	70
3.6.1.	Background	70
3.6.2.	Green Star objective	71
3.6.3.	Assessment Categories	71
3.6.4.	Green Star Scoring System	72
	Assessment Process	73
3.7. G	GREEN PYRAMID RATING SYSTEM	75
3.7.1.	Background	75
3.7.2.	Assessment Categories	76
	Assessment Process	76
	Scoring System	77
3.7.5.	Example of Green Pyramid Rating System	77
	UMMARY OF SUSTAINABLE RATING SYSTEMS	7 9
	System Maturity Objectives	79
	Usability objectives	80
	Applicability objectives	81
	Communicability	82
	Technical comparison objectives	82
CHAPT		84
CRITER	RIA OF SUSTAINABLE MATERIAL SELECTION AND	
	L PANEL SYSTEM	84
4.1.Intro		84
	ustainable building materials selection methodology	86
	Criteria	86
4.2.2.	Pre-construction stage (Assembling process)	87

4.2.	3. Construction stage: Use	88
4.2.	4. Post construction stage: Disposal	89
4.3.	Cementitious Sandwich Panel System (CSP)	90
4.3.	1. History of the cementitious sandwich panel	90
	Cementitious Sandwich Panel System characteristics	94
A.	EPS Foam Characteristics	96
В.	Mortar Characteristics	98
C.	Steel Wire Mesh	99
4.5.	Conclusion Error! Bookmark not defi	ned.
CHAF	PTER (5)	106
	JIL TRIDIPANEL SYSTEM BUILDING SYSTEM IN EGYPT	: A
CASE	STUDY	106
5.1.	Introduction	106
5.2.	Assembly of Enbuil-Tridipanel's	107
A.	V. Openings	109
В.	Wall and roof connection	112
C.	Utilities	114
D.	Columns and Beams	116
E.	Application of Cementitious Skins	117
5.3.	Case Study Assumption	120
5.4.	Case Study Objectives	121
5.5.	Methodology	122
5.6.	Simulation Software	123
A.	The Athena Impact Estimator	123
В.	Primavera software	124
5.7.	Case study (1) Bedouin low-income house	125
5.7.	1. Choosing Criteria	125
5.7.	2. Case Study Overview	126
5.7.	3. Modeling of spaces under study	128
5.8.		129
5.8.	Case study (2) Build your home	129
	1. Case Study Criteria	129
	2. Case Study Overview	130
	PTER (6)	133
CASE	STUDY RESULTS AND DISCUSSION	133
6.1.	Introduction	133
6.2.	Environmental Impacts Analysis	134
	1. Comparison of acidification potential by life cycle stage	134
	2. Eutrophication (EP)	136
	3. Stratospheric ozone depletion (ODP)	138
6.2.		
6.2.	5. Global warming potential	142

6.2	2.6. Fossil fuel consumption	144
6.2	2.7. Emissions to land life cycle inventory	146
6.2	2.8. Emissions to Air	148
6.3.	Cost analysis	150
6.4.	Time impact	153
	-	155
6.5.	Discussion	156
7.1.	CONCLUSION	160
7.2.	RECOMMENDATIONS FOR FUTURE RESEARCH	163
REF	ERENCES	165
APPI	ENDICES	I

LIST OF FIGURES

Figure 2. 1: The life cycle of a building element showing the inputs and outputs examined by LCA26
Figure 2. 2: Acidifying Phenomena showing main gases responsible for acidifying pollution
Figure 2. 3: Eutrophication Phenomena showing emissions of nitrates and phosphates leads to ecosystems damages
Figure 2. 4: Ozone depletion phenomena
Figure 2. 5: Photochemical ozone creation
Figure 2. 6: Global warming potential phenomena
Figure 2. 7: Hassan Fatty's Mud Architecture (Wafa, n.d.)
Figure 2. 8: Stress strain diagram (Ehsan mirnateghi 2016)
Figure 2. 9: Components of Cementitious sandwich panel system39
Figure 3. 1: Breakdown in BREEAM Office 2008 Points,
Figure 3. 2: BREEAM Assessment process
Figure 3. 3: Division of the assessment categories for CASBEE
Figure 3. 4: Labeling Based on Built Environment Efficiency (BEE)65
Figure 3. 5: CASBEE scoring system office 2008 points
Figure 3. 6: CASBEE examples
Figure 3. 7: Breakdown of GREEN STAR points
Figure 3. 8: GREEN STAR scoring and weighting (Hassan, 2009)74
Figure 3. 9: GPRS Assessment Category (Aleem, Zobaa, and Mageed 2015)76
Figure 3. 10: GPRS calculation example
Figure 4. 1: Components of a cementitious sandwich panel system (mimatghi, 2017)
Figure 4. 2: Components of the sandwich panel with parallel connectors (mimatghi, 2017)
Figure 4. 3: SIPs sandwich panel system (mimatghi, 2017).
Figure 4. 4: Conventional Wire Mesh 1:1 Grid Face (mimatghi, 2017)99
Figure 4.5: Stress-strain curve for 1:1 grid mesh (mimatghi, 2017)