

Ain Shams University Faculty of Engineering

Electronics and Communications Engineering Department

Design of PV modules including a layer between solar cells and glass cover to increase PV module lifetime

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of **Master of Science** in Electrical Engineering

Submitted By

Mohammed Mokhtar Abd-elatif Zayed

Supervised By

Prof.Dr.Wagdy Refaat Anis

Professor in the Electronics and Communications Engineering Department Faculty of Engineering _ Ain Shams University

Prof.Dr.Abdelmanaam Ibrahim Salem

Professor and head of the Physics and Mathematics Engineering Department Higher Institute of Engineering _ Alshorouk Academy

Ain Shams University
Cairo _ Egypt

2019

Ain Shams University Faculty of Engineering

Electronics and Communications Engineering Department

Design of PV modules including a layer between solar cells and glass cover to increase PV module lifetime

By

Mohammed Mokhtar Abd-elatif Zayed

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Alshorouk Academy High Institute of Engineering 2013

Examiners' Committee

Name and Affiliation	Signature
Prof.Dr. Elsayed Mostafa Saad Electronics and Communication , Helwan University	
Prof.Dr. Abdelhalim Abdelnaby Zekry	
Electronics and Communications , Ain Shams University	
Prof.Dr. Wagdy Refaat Anis	
Electronics and Communications , Ain Shams University	
Prof.Dr. Abd-elmnaam Ibrahim Salem	
Physics and Mathematical Engineering, Higher institute of	
Engineering ,Alshorouk Academy	

Date: 15/6/2019

Statement

This thesis is submitted to Ain Shams University for degree of Master of

Science in Electrical Engineering.

The work included in this thesis was carried out by the author at

Electronics and communication Engineering Department, Faculty of

Engineering, in Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree of a qualification at

any other university or institution.

Name: Mohammed Mokhtar Zayed

Signature:

Date: 15/6/2019.

ı

Curriculum Vitae

Name : Mohammed Mokhtar Abd-elatif Zayed

Date of birth : 24/5/1990

Place of birth : Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of specialization : Electronics and Communication

Name of University : Alshorouk High Institute of Engineering

Date of issued degree : May 2013

Current job : demonstrator

ABSTRACT

The current design of solar cell modules (PV modules) makes solar cells completely attached to the coat of the glass, which means that the damage of the glass envelope leads to the replacement of the module completely. This means that the solar cells are lost even though they are intact and not damaged. This research suggests that these modules should be used even after the glass has been damaged.

This work studies the effect of introducing air layer between solar cells and the tempered glass of the PV module, such layer enables one to replace only the tempered glass in case of its damage instead of replacing the PV module totally. Thus the cost of replacement of PV modules at the end of its lifetime is drastically reduced. As a result significant reduction in PV systems cost may be achieved.

Keywords:

Anti-Reflecting Coating layer (ARC layer), Photovoltaic modules (PV modules).

Thesis Summary

Introduction

The current design of solar cell modules (PV modules) makes solar cells completely attached to the coat of the glass, which means that the damage of the glass envelope leads to the replacement of the module completely. This means that the solar cells are lost even though they are intact and not damaged. This research suggests that these modules should be used even after the glass has been damaged.

Research Goal

This research aims to benefit from solar cells even after the glass layer of the solar cells has been damaged.

Research Plan

- Conduct a survey of the research carried out in the field of manufacturing solar cells, especially the design of anti-reflection coating layer (ARC).
- Calculation of the reflected energy in the case of changing the refractive index of the ARC layer and calculating the optimal refractive index which leads to minimum reflection under the vertical fall of radiation.
- Design a solar cell module (PVmodule) that contains a layer between solar cells and glass. This is unlike the standard design in which the cells are fully attached to the coat of the glass. Making mathematical module of the proposed design and knowing the effect of the proposed layer between the cells and the glass cover on the energy reflected from the solar cell module in case of falling Vertical rays and falling non-vertical rays.
- A detailed economic study was conducted to determine the effect of the
 presence of the proposed layer on the default age of the solar cell module as
 well as the economic impact on the cost of energy generated by solar cells.

Chapter (1): This Chapter discusses short introduction about sun, sources of energy, semiconductors, solar cell materials, literature and background.

Chapter(2): This section discusses the study of the anti-reflecting coating layer (ARC) and the calculation of reflected energy in the case of changing the refractive index, as well as calculating the optimal refractive index that leads to minimum reflection under the conditions of the vertical fall of radiation.

Chapter (3): This section discusses the design work of the module of solar cells (PVmodule) which contains a layer between the solar cells and glass. Comparing this design with the standard design of solar cells, in which the cells are fully attached to the glass cover in terms of the following:

- Energy and electric power of solar cells.
- Efficiency of solar cells.
- Impact of refractive index change for both the (ARC) layer and the proposed lamination layer.

Chapter (4): discusses the work of a detailed economic study to see the effect of the presence of the proposed layer on the age of the default solar cell module as well as the economic impact on the cost of energy from solar cells.

Chapter (5): This section deals with a simple summary of the research and suggestions for future work in this Research.

Keywords:

Anti-Reflecting Coating layer (ARC layer), Photovoltaic modules (PV modules).

Acknowledgment

Firstly: I thank God Almighty to complete this thesis after a long period of effort, giving, perseverance and diligence.

Secondly: I would like to thank my teacher **Prof. Dr. Wagdy Refaat Anis** for all his assistance to me to complete this research. He was supportive to me in everything. I would also like to thank my teacher **Prof.Dr.Abdelmanaam Ibrahim Salem** for his help and guidance to me.

My sincere thanks and appreciation to my father, **Eng.** / **Mokhtar Abdellatif Zayed** and my mother for their efforts and support. They provide the means of complete comfort and suitable atmosphere to complete this research.

My sincere thanks and gratitude to my dear colleague, **Eng.** / **Saeed Mohsen Abosrea**, for helping me in my problems.

Finally, I would like to thank the partners of the struggle, endurance and patience for all the difficulties and penalties in my life to my dear wife and my dear son **Hamza Mohammed Mokhtar Zayed**. I have all the love, appreciation and thanks for their efforts, patience, support and motivation.

Table of Contents

Statement	I
Curriculum Vitae	II
ABSTRACT	III
Thesis Summary	IV
Acknowledgment	VI
Table of contents	VII
List of figures	XII
List of tables	XV
List of ABBREVIAIONS	XVII
List of SYMBOLS	XVIII
Chapter 1: Introduction&Literature and Back ground	1
1 Introduction	1
1.1 Sources of energy	2
1.2 Sustainable energy and non-sustainable energy sources	2
1.2.1 Sustainable energy sources	2
1.2.2 Non-sustainable energy sources	3
1.3 Pros and cons of sustainable sources of energy	3
1.3.1 Pros of sustainable sources of energy	3
1.3.2 Cons of sustainable sources of energy	5
1.4 Pros and cons of non-sustainable sources of energy	5
1.4.1 Pros of non-sustainable sources of energy	5
1.4.2 Cons of non-sustainable sources of energy	6
1.5 The sun	6
1.6 The solar irradiance	8
1.7 Air Mass	9
1.8 The photovoltaic	10

1.8.1 First Generation of photovoltaic	11
1.8.2 Second Generation of photovoltaic	11
1.8.3 Third Generation of photovoltaic	11
1.9 Photovoltaic (PV) technology	11
1.10 Photovoltaic (PV) layers	12
1.11 Pros of PV technology	12
1.12 The function of solar cells	12
1.13 Solar Cell Material	13
1.13.1 Silicon	13
1.13.2 Cadmium Telluride (CdTe)	14
1.13.3 Copper-Indium Selenide (CuInSe ₂)	14
1.13.4 Gallium Arsenide Multi-junction (GaAs)	14
1.13.5 Single Crystal Solar Cell	14
1.13.6 Light-absorbing Dyes	15
1.13.7 Nano-crystalline solar cells	15
1.13.8 Low-cost solar cells	15
1.14 Semiconductors	15
1.15 Grid-connected systems	16
1.16 Applications of photovoltaic cells	17
1.17 Pros and cons of photovoltaic	18
1.17.1 Pros of photovoltaic	18
1.17.2 Cons of photovoltaic	18
1.18 Literature and Background	18
Chapter 2: Anti-reflecting coating layer(ARC-layer)	23
2.1 Anti-reflecting coating(ARC-layer)	24
2.1.1 ARC Thickness	25
2.1.2 ADC Defrective Index	25

2.1.3 ARC Reflectance	25
2.1.4 ARC Substrate Reflectivity	26
2.1.5 Anti-Reflection Coating Color	27
2.2 Double Layer Anti-Reflection Coating(DLARC)	28
2.3 Analysis of Anti-Reflecting Coating Layer(ARCL)	30
Chapter 3: Design and Modeling of PhotoVoltaic solar cell	35
3.1 Analysis of incident light on solar cell	36
3.1.1 Normal incidence	36
3.1.2 The proposed design	37
3.1.2.1 Declination angle(δ)	38
3.1.2.2 Hour angle(ω)	39
$3.1.2.3$ Tilt angle(β)	40
3.1.2.4 Latitude angle(Φ)	40
3.1.2.5 Incidence angle(θ_T)	40
3.1.2.6 Sunset hour on ahorizontal surface $angle(\omega_s)$ and at atilted surface	
$angle(\omega s'')$	
3.1.2.7 Daytime(t _d)	43
3.1.2.8 Clearness index(K _T)	43
3.1.2.9 The factor(R_b)	44
3.1.2.10 The global radiation(H _T)	45
3.1.2.11 The instantaneous solar irradiance(G _T)	45
3.1.2.12 The Array current(I _A)	46
3.1.2.13 The generated electric power and energy	46
3.2 Results from MATHLAB and EXCELL sheet calculations	47
3.2.1 Normal incidence	47
3.2.2 The proposed design	49

Chapter 4: Economic Analysis	-64
4.1 Geometric series	-65
4.2 Calculation total cost of PV grid connected system using silicon material	-67
4.3 Economic analysis of PV grid connected system using silicon material in the	
ideal system	-70
4.3.1 Economic analysis in Cairo site using with silicon materials	-70
4.3.2 Economic analysis in Alex site using with silicon materials	-70
4.3.3 Economic analysis in Aswan site using with silicon materials	-70
4.4 Economic analysis of PV grid connected system using silicon material in the ideal system without coupling transformer cost	-71
4.4.1 Economic analysis in Cairo site using with silicon materials	-71
4.4.2 Economic analysis in Alex site using with silicon materials	-71
4.4.3 Economic analysis in Aswan site using with silicon materials	-72
4.5 Economic analysis of PV grid connected system using silicon material in the	
ideal system without guarding cost	-72
4.5.1 Economic analysis in Cairo site using with silicon materials	-72
4.5.2 Economic analysis in Alex site using with silicon materials	-73
4.5.3 Economic analysis in Aswan site using with silicon materials	-73
4.6 Economic analysis of PV grid connected system using silicon material in the ideal system without coupling transformer and guarding costs	-73
4.6.1 Economic analysis in Cairo site using with silicon materials	-74
4.6.2 Economic analysis in Alex site using with silicon materials	-74
4.6.3 Economic analysis in Aswan site using with silicon materials	-74
4.7 The proposed design	-76
4.8 Economic analysis of PV grid connected system using silicon material in the proposed system	-76
4.8.1 Economic analysis in Cairo site using with silicon materials	
4.8.2 Economic analysis in Alex. site using with silicon materials	

4.8.3 Economic analysis in Aswan site using with silicon materials	77
4.9 Economic analysis of PV grid connected system using silicon material in the	e
proposed system without coupling transformer cost	78
4.9.1 Economic analysis in Cairo site using with silicon materials	78
4.9.2 Economic analysis in Alex site using with silicon materials	78
4.9.3 Economic analysis in Aswan site using with silicon materials	79
4.10 Economic analysis of PV grid connected system using silicon material in the	ne
proposed system without guarding cost	79
4.10.1 Economic analysis in Cairo site using with silicon materials	79
4.10.2 Economic analysis in Alex site using with silicon materials	80
4.10.3 Economic analysis in Aswan site using with silicon materials	80
4.11 Economic analysis of PV grid connected system using silicon material in the	ne
proposed system without coupling transformer and guarding costs	80
4.11.1 Economic analysis in Cairo site using with silicon materials	81
4.11.2 Economic analysis in Alex site using with silicon materials	81
4.11.3 Economic analysis in Aswan site using with silicon materials	81
Chapter 5: Conclusions and Future work	83
Conclusions	84
Future Work	85
BIBLIOGRAPHY	86

List of Figures

Fig.1.1. Renewable energy and non-renewable energy	3
Fig.1.2. Radiation of the sun	6
Fig.1.3. Radiation intensity for the sun and the earth	7
Fig.1.4. Sun radius, earth radius and separation between them	8
Fig.1.5. Zenith angle	9
Fig.1.6. Solar cell structure	10
Fig.1.7. Semiconductor materials in periodic table	15
Fig.1.8. Electrical schematic of grid-connected photovoltaic system	16
Fig.1.9. On grid PV system	17
Fig.2.1. ARC layer	24
Fig.2.2. The effect of a single layer ARC on silicon	26
Fig.2.3. Comparison of surface reflection from asilicon solar cell, with and wit	hout
atypical ARC	27
Fig.2.4. Colour of ARC at different wave lengths	27
Fig.2.5. Double layer anti-reflection film on silicon wafer	28
Fig.2.6. Double layer of anti-reflecting coating(DLARC)	29
Fig.2.7. Reflected power at the interface of two media of different refractive	
indices	30
Fig.2.8. Effect of AR coating on the fraction of reflected power	31
Fig.2.9. Arrangement of solar cells module	33
Fig.2.10. Percentage reflection of different combinations versus wavelength	34
Fig.3.1. Solar declination angle(δ)varies during the year	38
Fig.3.2. Declination angle(δ)	38
Fig.3.3. Equivalent circuit of ideal solar cell	46
Fig.3.4. Equivalent circuit of real solar cell	46
Fig.3.5. Layers of ideal solar cell at normal incidence	47

Fig.3.6. Relation between the refractive index of ARC and absorbtion coefficient	
silicon solar cell	47
Fig.3.7. Relation between the incidence angle from the sun and the absorbtion	40
coefficient of silicon solar cell	
Fig.3.8. Generated power from the proposed design at normal incidence	
Fig.3.9. Generated energy from the proposed design at normal incidence	
Fig.3.10. Layers of real solar cell in the proposed design	.49
Fig.3.11. Generated power from the proposed design at 17 th january	-50
Fig.3.12. Generated energy from the proposed design at 17 th january	-50
Fig.3.13. Generated power from the proposed design at 16 th february	-51
Fig.3.14. Generated energy from the proposed design at 16 th february	-51
Fig.3.15. Generated power from the proposed design at 16 th marth	-52
Fig.3.16. Generated energy from the proposed design at 16 th marth	-52
Fig.3.17. Generated power from the proposed design at 15 th april	-53
Fig.3.18. Generated energy from the proposed design at 15 th april	-53
Fig.3.19. Generated power from the proposed design at 15 th may	-54
Fig.3.20. Generated energy from the proposed design at 15 th may	-54
Fig.3.21. Generated power from the proposed design at 11 th june	-55
Fig.3.22. Generated energy from the proposed design at11 th june	-55
Fig.3.23. Generated power from the proposed design at 17 th july	-56
Fig.3.24. Generated energy from the proposed design at17 th july	-56
Fig.3.25. Generated power from the proposed design at 16 th augest	-57
Fig.3.26. Generated energy from the proposed design at 16 th augest	-57
Fig.3.27. Generated power from the proposed design at 15 th september	-58
Fig.3.28. Generated energy from the proposed design at 15 th september	-58
Fig.3.29. Generated power from the proposed design at 15 th october	.59
Fig.3.30. Generated energy from the proposed design at 15 th october	.59
Fig 3.31. Generated power from the proposed design at 1.4th povember	-60