COMPARATIVE ANALYSIS OF REMOVAL OF HEAVY METAL IONS AND ORGANIC RESIDUES IN INDUSTRIAL WASTEWATER BY USING ABSORBENT MATTER (BIOCHAR) AND/OR CO-AGULANT SURFACTANTS (CATIONIC SURFACTANTS)

Submitted By Rasha Mohamed Saleh Ibrahim

B.Sc. of Science (Biochemistry), Faculty of Science, Ain Shams University, 2001
 Master in Environmental Sciences, Institute of Environmental Studies and Research,
 Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Doctor of Philosophy Degree In Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

2019

APPROVAL SHEET

COMPARATIVE ANALYSIS OF REMOVAL OF HEAVY METAL IONS AND ORGANIC RESIDUES IN INDUSTRIAL WASTEWATER BY USING ABSORBENT MATTER (BIOCHAR) AND/OR CO-AGULANT SURFACTANTS (CATIONIC SURFACTANTS)

Submitted By

Rasha Mohamed Saleh Ibrahim

B.Sc. of Science (Biochemistry), Faculty of Science, Ain Shams University, 2001

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences

Department of Environmental Basic Sciences
This Thesis Towards a Doctor of Philosophy Degree in
Environmental Sciences Has been Approved by:
Name
Signature

1- Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Analytical Chemistry

Vice Dean of Institute of Environmental Studies & Research for Environment & Community Affairs

2- Prof. Dr. Hanan Sayed Abd El-Rahman

Prof. of Wastewater Treatment Technology National Research Center

3- Prof. Dr. Mohamed Yossef El-Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

4- Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

5- Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

COMPARATIVE ANALYSIS OF REMOVAL OF HEAVY METAL IONS AND ORGANIC RESIDUES IN INDUSTRIAL WASTEWATER BY USING ABSORBENT MATTER (BIOCHAR) AND/OR CO-AGULANT SURFACTANTS (CATIONIC SURFACTANTS)

Submitted By

Rasha Mohamed Saleh Ibrahim

B.Sc. of Science (Biochemistry), Faculty of Science, Ain Shams University, 2001

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

2- Prof. Dr. Mohamed Yossef El-Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

3- Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Analytical Chemistry Vice Dean of Institute of Environmental Studies & Research for Environment & Community Affairs

Acknowledgment

First and foremost, all greatest gratefulness and deepest appreciation to Allah for his continuous countless blessings I would like to thank **Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy**, my research supervisor, for his patient guidance, enthusiastic encouragement and useful critiques of this research work. I would also like to thank **Prof. Dr. Mohamed Yossef El-Kady** and **Prof. Dr. Mustafa Hassan Khalil** for their advices and assistance.

I am very grateful to **Dr. Mohamed Eid Mohamed**, Researcher in Water Pollution Research Department, National Research Center. He gave me much of his valuable experiences, advices, constructive criticism and time.

Finally, I would like to thank my mother, my father, my husband, my daughters (Rawan and Rahaf), my sisters and my brother, and everyone who gives me a hand throughout this study, for their support and encouragement.

Rasha M. Saleh

2019

Abstract

With the rapid industrialization and civilization, different contaminants are released to wastewater including heavy metals, and organic pollutants, which they have serious harms to human health. There is serious need for finding suitable methods for purification wastewater. In this work, corncob biochar was used as a solid adsorbent for removal of Pb, Ni, Zn, Cd ions and 4-nitrophenol from industrial wastewater through batch techniques. The influences of biochar dose, pH, concentration of pollutants, and contact time with biochar on removal percentages were investigated. Optimum removal of Pb, Ni, Zn and Cd ions was achieved at biosorbent dose (2 g/L), pH 6.5 and contact time (90 min.).

Optimum removal of 4- nitro phenol was achieved at bio-sorbent dose (2 g/L), pH 6.5 and contact time (90 min). Kinetic studies and isotherms were applied to experimental data of biosorption of metals and 4-nitrophenol. As fixed bed column adsorption of metals and 4-nitrophenol was applied to simulate industrial application. Results of this study confirmed that corncob biochar can be beneficially used for treating wastewater containing Pb, Ni, Zn, Cd ions and organic residues.

Key words

Adsorption, Biochar, Water pollutants, Biosorbent, 4- nitrophenol.

List of Contents

Title Pa	ge No.
List of Tables	VII
List of Figures	VIII
List of Abbreviations	XIII
Chapter 1: Introduction	1-8
Chapter 2: Review of Literature	9-61
2.1 Heavy metals	9
2.1.1 Definitions	9
2.1.2 Exposure and risk	10
2.1.3 Heavy Metals in Wastewater	11
2.2 Nitro-aromatic compounds	11
2.3 Biochar	13
2.3.1 Biochar definition	13
2.3.2 Biochar Preparation	18
2.3.2.1 Pyrolysis	20
2.3.2.2 Gasification	22
2.3.2.3 Thermal decomposition	23
2.3.3 Biochar properties	23
2.3.3.1 Surface area and porosity	25
2.3.3.2 pH and surface charge	25
2.3.3.3 Functional groups	26
2.3.3.4 Mineral composition	27
2.3.3.5 The heterogeneous chemical nature of biochar	28
2.3.3.6 The particulate form of biochar	28
2.3.3.7 Stability	29

Title	Page No.
2.4 Biochar from agriculture waste	30
2.5 potential applications of biochar	31
2.5.1 Remediation and restoration of contaminated soils	32
2.5.2 Environmental application	33
2.5.3 Water and wastewater treatment	34
2.6 Adsorption	36
2.7 Factors affecting adsorption	37
2.7.1 Effect of surface area	37
2.7.2 Effect of concentration and dose of adsorbate	38
2.7.3 Effect of pH	39
2.7.4 Effect of time	39
2.8 Forces of adsorption	40
2.8.1 Physical adsorption	40
2.8.2 Chemical adsorption	41
2.8.2.1 Hydrogen bonding	41
2.8.2.2 Electrostatic bonding	42
2.8.2.3 Coordination reaction	42
2.9 Adsorption of pollutants	42
2.9.1 Heavy metals	42
2.9.1.1 Lead	43
2.9.1.2 Zinc	44
2.9.1.3 Cadmium	45
2.9.2 Adsorption mechanism for heavy metal removal	46
2.9.3 Organic pollutants	48
2.9.4 Adsorption mechanisms for organic pollutant removal .	49
2.10 Kinetic models	52

Title Pa	ge No.
2.10.1 The Pseudo-first-order	53
2.10.2 The Pseudo-second-order	53
2.10.3 Weber-Morris kinetic model	54
2.10.4 Boyd plot	54
2.11 Adsorption equilibrium isotherms	55
2.11.1 Langmuir isotherm model	55
2.11.2 Freundlich isotherm model	56
2.11.3 Temkin isotherm model	57
2.11.4 Dubinin-Radushkevich isotherm model	58
2.11.5 Flory-Huggins isotherm model	58
2.12 Continuous flow system for adsorption: Fixed-bed columns	59
2.12.1 Operational management	59
2.12.2 Column applications	60
2.13 Aim of the work	61
Chapter 3: Materials and Methods	62-77
3.1 Preparation of biochar from corn cob (pyrolysis method)	62
3.2 Characterization of prepared biochar	63
3.2.1 Scanning Electron Microscope (SEM)	63
3.2.2 Infrared spectrometry (IR)	64
3.2.3 Point of zero charge (PZC)	64
3.3 Synthetic solutions preparation	65
3.3.1.Preparation and determination of 4-nitrophenol concentration	65
3.3.2.Preparation and determination of Cd, Ni, Zn and Pb concentration	67
3.4 Experimental procedure	69

Title Pa	age No.
3.4.1 Batch adsorption studies	
ī	
3.4.1.1 Effect of contact time	
3.4.1.2. Effect of dose of biochar	
3.4.1.3 Effect of initial pH of solution	
3.4.1.4. Effect of initial concentration of adsorbate	71
3.4.2 Kinetic models	72
3.4.3. Adsorption equilibrium isotherms	73
3.5. Fixed- bed column studies	74
3.5.1 Column Runs for examining capacity of biochar	75
3.5.2 Volumetric loading rate of column runs for biochar	75
3.5.3 The breakthrough curves	76
3.5.4 Breakthrough (biochar) capacity	76
3.5.5 The empty bed contact time (EBCT)	76
3.6 Analytical Methods	77
3.6.1 pH measurement	77
3.6.2 Heavy metals determination	77
3.6.3 4-nitrophenol determination	77
Chapter 4: Results and Discussion	78-161
4.1 characterization of as- prepared biochar	78
4.1.1 Scanning electron microscope (SEM)	78
4.1.2 Infrared (IR) spectrometry	80
4.1.3 Point of zero charge (pH PZC)	81
4.2 Wastewater treatment by using as-prepared biochar	82
4.2.1 Removal of 4-nitrophenol (4-NP) from wastewater by biochar	83
4.2.1.1 Factors affecting the adsorption of 4-NP over biochar	83

Title	Page No.
4.2.1.1.1 Effect of contact time	83
4.2.1.1.2. Effect of initial pH of 4- NP solution	85
4.2.1.1.3. Effect of sorbent dose	87
4.2.1.1.4. Effect of initial 4 nitrophenol (4-NP) concern	tration 88
4.2.1.2. Adsorption kinetics of 4- nitrophenol (4-NP).	90
4.2.1.2.1. The Pseudo-first-order model	90
4.2.1.2.2. The Pseudo-second-order model	91
4.2.1.2.3. Weber-Morris kinetic model	92
4.2.1.2.4. Boyd plot	93
4.2.1.3. Adsorption isotherms models of 4-NP	95
4.2.1.3.1. Langmuir isotherm model	95
4.2.1.3.2. Freundlich isotherm model	97
4.2.1.3.3. Temkin isotherm model	98
4.2.1.3.4. Dubinin-Radushkevich isotherm model	98
4.2.1.3.5. Flory–Huggins isotherm model	100
4.2.2 Removal of heavy metals from wastewater by bi	ochar 101
4.2.2.1. Factors affecting the adsorption of metals i biochar	
4.2.2.1.1. Effect of contact time	102
4.2.2.1.2. Effect of pH	105
4.2.2.1.3. Effect of the sorbent dose	108
4.2.2.1.4. Effect of initial metal ion concentration	110
4.2.2.2. Adsorption kinetics of metal ions	115
4.2.2.2.1. The Pseudo-first-order model	115
4.2.2.2 The Pseudo-second-order model	118
4.2.2.2.3. Weber-Morris kinetic model	121

Title	Page No.
4.2.2.2.4. Boyd plot	123
4.2.2.3. Adsorption isotherms of metal ions	126
4.2.2.3.1. Langmuir isotherm model	126
4.2.2.3.2. Freundlich isotherm model	129
4.2.2.3.3. Temkin isotherm model	132
4.2.2.3.4. Dubinin-Radushkevich isotherm model	134
4.2.2.3.5. Flory-Huggins isotherm model	137
4.3 Fixed Bed Columns	140
4.3.1 Metal ions decontamination by fixed bed column fro biochar	
4.3.2 4-NP Decontamination by Fixed bed column from Biochar	
Chapter 5: Conclusion and Recommendations	162
5.1. Conclusion	162
5.2. Recommendations	164
Summary	165
Deferences	168

List of Tables

Table No.	Title	Page No.
2.1	Bio-char produced from various types of biomass.	15
3.1	Parameters Conditions of ICP-OES instrument.	68
3.2	The wavelength and detection limit for Cd, Ni, Zn and Pb using ICP-OES.	69
4.1	Kinetic parameters of 4-NP adsorption over biochar.	94
4.2	Isotherm parameters of 4-NP adsorption over biochar.	101
4.3	Kinetic parameters of metal ions adsorption over biochar.	126
4.4	Adsorption isotherms constants and correlation coefficients of metals ions sorption over biochar.	139
4.5	Lead Removal Using biochar at Volumetric Flow Rate of 1.667 ml/min.	142
4.6	Nickel Removal Using biochar at Volumetric Flow Rate of 1.667 ml/min.	147
4.7	Cadmium Removal Using biochar at Volumetric Flow Rate of 1.667 ml/min.	150
4.8	Zinc Removal Using biochar at Volumetric Flow Rate of 1.667 ml/min.	154
4.9	4-NP Removal Using biochar at Volumetric Flow Rate of 1.667 ml/min.	159

List of Figures

Fig. No.	Title	Page No.
2.1	The benefits of biochar applied as an effective adsorbent for wastewater treatment.	35
3.1	SEM model Quanta 250 FEG.	63
3.2	Agilent Cary 630 FTIR spectrometer.	64
3.3	WTW digital pH meter model 525.	65
3.4	Agilent (Cary 60) UV-Vis spectrophotometer.	66
3.5	Agilent ICP-OES (720 series) instrument.	67
4.1	SEM pictures of as-prepared biochar.	79
4.2	FTIR spectra of as-prepared biochar.	80
4.3	PZC of as-prepared biochar.	81
4.4	Schematic diagram for PZC of as-prepared biochar surface	82
4.5	Effect of contact time on the removal efficiency of 4-NP.	84
4.6	Effect of contact time on the adsorption capacity of 4-NP.	84
4.7	Effect of pH on the removal efficiency of 4-NP.	86
4.8	Effect of pH on the adsorption capacity of 4-NP.	86
4.9	The effect of biochar dose on the removal efficiency of 4-NP.	87
4.10	The effect of biochar dose on the adsorption capacity of 4-NP.	88
4.11	Effect of 4-NP initial concentration on the removal efficiency of biochar.	89
4.12	Effect of 4-NP initial concentration on the adsorption capacity of biochar.	89
4.13	Pseudo first order plot for 4-NP adsorption over biochar	91
4.14	Pseudo second order plot for 4-NP adsorption over biochar.	92
4.15	Weber–Morris plot for 4-NP adsorption over biochar.	93

Fig. No.	Title	Page No.
4.16	Boyd Plot of Bt versus t for 4-NP adsorption over biochar.	94
4.17	Langmuir plot of 4-NP adsorption over biochar.	95
4.18	Separation factor RL versus initial concentration for 4-NP adsorption over biochar.	96
4.19	Freundlich plot of 4-NP adsorption on biochar.	97
4.20	Temkin plot of 4-NP adsorption on biochar.	98
4.21	(D-R) plot of 4-NP adsorption over biochar.	99
4.22	Flory-Huggins isotherm plot of 4-NP adsorption on biochar.	100
4.23	The effect of contact time with adsorbent on the removal efficiency of Cd ions.	103
4.24	The effect of contact time with adsorbent on the removal efficiency of Pb ions.	103
4.25	The effect of contact time with adsorbent on the removal efficiency of Ni ions.	104
4.26	The effect of contact time with adsorbent on the removal efficiency of Zn ions.	104
4.27	Effect of pH on the removal efficiency of Cd metal ions on biochar.	106
4.28	Effect of pH on the removal efficiency of Pb metal ions on biochar.	106
4.29	Effect of pH on the removal efficiency of Ni metal ions on biochar.	107
4.30	Effect of pH on the removal efficiency of Zn metal ions on biochar.	107
4.31	Effect of adsorbent dose on the removal efficiency of Cd metals ions on biochar.	108
4.32	Effect of adsorbent dose on the removal efficiency of Pb metals ions on biochar.	109

Fig.	Title	Page No.
4.33	Effect of adsorbent dose on the removal efficiency of Ni metals ions on biochar.	109
4.34	Effect of adsorbent dose on the removal efficiency of Zn metals ions on biochar.	110
4.35	Effect of initial Cd metal ions concentration on the removal efficiency.	111
4.36	Effect of initial Pb metal ions concentration on the removal efficiency.	111
4.37	Effect of initial Ni metal ions concentration on the removal efficiency.	112
4.38	Effect of initial Zn metal ions concentration on the removal efficiency.	112
4.39	Effect of initial Pb metal ions concentration on the adsorption capacity.	113
4.40	Effect of initial Ni metal ions concentration on the adsorption capacity.	113
4.41	Effect of initial Cd metal ions concentration on the adsorption capacity.	114
4.42	Effect of initial Zn metal ions concentration on the adsorption capacity.	114
4.43	Pseudo-first order plot for adsorption of Cd metal ions over biochar.	116
4.44	Pseudo-first order plot for adsorption of Pb metal ions over biochar.	116
4.45	Pseudo-first order plot for adsorption of Ni metal ions over biochar.	117
4.46	Pseudo-first order plot for adsorption of Zn metal ions over biochar.	117
4.47	Pseudo second order plot for adsorption of Cd metal ions over biochar.	119