

## AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

# ANALYTICAL INVESTIGATION OF STATICALLY INDETERMINATE FLEXURAL RC MEMBERS STRENGTHENED BY PRESTRESSED STEEL AND FRP

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

### MASTER OF SCIENCE In CIVIL ENGINEERING (STRUCTURES)

By

### OMAR GOUDA MOHAMMED MOHAMMED

Supervised By

### Professor Dr. Amr Ali AbdelRahman

Professor of Concrete Structures, Head of Structural Engineering Department, Ain Shams University

### Dr. Marwan M. Tarek Shedid

Associate Professor, Structural Engineering Department, Ain Shams University

### Dr. Reham M. Galal El Tahawy

Assistant Professor, Structural Engineering Department, Ain Shams University



### AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

# ANALYTICAL INVESTIGATION OF STATICALLY INDETERMINATE FLEXURAL RC MEMBERS STRENGTHENED BY PRESTRESSED STEEL AND FRP

## By OMAR GOUDA MOHAMED MOHAMED

B.Sc. (2014) with honor Civil Engineering – Structural Department Faculty of Engineering – Ain Shams University

### **EXAMINERS COMMITTEE**

|                                               | Signature                               |
|-----------------------------------------------|-----------------------------------------|
| Prof. Alaa Gamal Sherif                       | _                                       |
| Professor of Concrete Structures              | • • • • • • • • • • • • • • • • • • • • |
| Faculty of Engineering – Helwan University    |                                         |
| Prof. Ahmed Sherif Essawy                     |                                         |
| Professor of Concrete Structures              |                                         |
| Faculty of Engineering – Ain Shams University |                                         |
| Prof. Amr Ali AbdelRahman                     |                                         |
| Professor of Concrete Structures              |                                         |
| Head of Structural Department                 |                                         |
| Faculty of Engineering – Ain Shams University |                                         |

**Date: 15 May 2018** 

### **STATEMENT**

This thesis is submitted as partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structures), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Date :

Name : OMAR GOUDA MOHAMED MOHAMED

Signature : .....

### **AUTHOR**

Name : Omar Gouda Mohamed Mohamed

Date of birth : 20 December 1992

Place of birth : Cairo, Egypt

Academic Degree : B.Sc. in Civil Engineering

Major : Structural Engineering

University : Ain Shams University

Date : June 2014

Grade : Distinction with Honor

Current job : Teaching and Research Assistant

Faculty of Engineering - Ain Shams University

### **ACKNOWLEDGEMENT**

First of all, thanks to the great **ALLAH** and May His peace and blessings be upon our prophet Mohamed and all his prophets for granting me the chance and the ability to complete this study successfully.

I would like to express my deepest gratitude to **Prof. Amr AbdelRahman**, Professor of Concrete Structures, Head of Structural Department, Faculty of Engineering, Ain Shams University, for his genuine support, valuable advice, sincere comments, and deep encouragement through all phases of work that helped me to finish this study in appropriate shape. I'm also extremely thankful to **Doctor Marwan Shedid**, Associate Professor of Concrete Structures, **and Doctor Reham Galal**, Assistant Professor of Concrete Structures, Faculty of Engineering, Ain Shams University, for their guidance, great support, sincere comments and valuable suggestions.

I would like to thank sincerely my **mother** and **father** for their great support and encouragement to me all time and for what they had done to me in all my life, no words can express or fulfill their great right on me. I would like to thank my family; my brother and his wife, my sister and her husband for their support and encouragement to me all time.

Finally, I am particularly grateful to my lovely wife, **Nahla Salah**, for helping and assisting me in all the stages of this work, her support and encouragement in the days prior to submitting this study, her help in the accomplishment of this work. Without her endurance and extreme care, this study would never have been possible.

I can't forget by the way my lovely son **Hady**, who is just only two months old, wishing him the best in his life.

### TABLE OF CONTENTS

| TABLE OF CONTENTS                                             | i    |
|---------------------------------------------------------------|------|
| LIST OF FIGURES                                               | vi   |
| LIST OF TABLES                                                | xvii |
| NOTATIONS                                                     | xix  |
| ABSTRACT                                                      | XX   |
| Chapter 1: INTRODUCTION                                       | 1    |
| 1.1 General                                                   | 1    |
| 1.2 External Prestressing by Steel Strands                    | 2    |
| 1.3 External Prestressing by Externally Bonded CFRP Laminates | 3    |
| 1.4 Objectives of the Research                                | 4    |
| 1.5 Scope and Contents                                        | 5    |
|                                                               |      |
| Chapter 2: LITERATURE REVIEW                                  | 7    |
| 2.1 Introduction                                              | 7    |
| 2.2 Flexural Strengthening using Fiber Reinforced Polymers    | 7    |
| 2.2.1 Adhesives                                               | 8    |
| 2.2.1.1 Epoxy Resin                                           | 9    |
| 2.2.1.2 Vinyl ester Resin                                     | 10   |
| 2.2.1.3 Polyester Resin                                       | 10   |
| 2.2.2 FRP Types                                               | 11   |
| 2.2.2.1 Fiber Materials                                       | 11   |
| 2.2.2.2 Fiber Forms                                           | 13   |
| 2.3 Flexural Strengthening using CFRP                         | 14   |
| 2.3.1 Flexural Strengthening using Non-Prestressing CFRP      | 14   |

| 2.3.2 Flexural Strengthening using Prestressing CFRP            | 17          |
|-----------------------------------------------------------------|-------------|
| 2.4 Flexural Strengthening using Externally Prestressing St     | eel Strands |
|                                                                 | 23          |
| 2.4.1 Introduction                                              | 23          |
| 2.4.2 Advantages and Disadvantages of the Technique             | 24          |
| 2.4.3 Properties of Prestressing Tendons                        | 26          |
| 2.4.4 Efficiency of Tendons Profiles                            | 26          |
| 2.4.4.1 Effective Eccentricity                                  | 26          |
| Chapter 3: Verification Models                                  | 32          |
| 3.1 General                                                     | 32          |
| 3.2 Slabs Strengthened Using Externally Prestressing Steel Stra | ands35      |
| 3.3 Slabs Strengthened Using Externally Prestressi              | ng CFRP     |
| Laminates                                                       | 37          |
| 3.4 Specimens Characteristics                                   | 40          |
| 3.4.1 Loading Scheme                                            | 40          |
| 3.4.2 Concrete Cross-section Shape                              | 41          |
| 3.4.3 Steel Reinforcement                                       | 41          |
| 3.4.4 CFRP Dimensions and Properties                            | 41          |
| 3.4.5 Steel Strands Properties                                  | 41          |
| 3.4.6 Epoxy                                                     | 42          |
| Chapter 4: Finite Element Modeling                              | 43          |
| 4.1 General                                                     | 43          |
| 4.2 Finite Element Modeling                                     | 44          |
| 4.3 Solution Strategy                                           | 44          |
| 4.4 Developed FF Models                                         | 46          |

| 4.5 Finite Elements Utilized in The Model                     | 47 |
|---------------------------------------------------------------|----|
| 4.5.1 Solid Elements                                          | 47 |
| 4.5.2 Truss Elements                                          | 48 |
| 4.6 Material Models                                           | 50 |
| 4.6.1 Concrete Material Modeling                              | 50 |
| 4.6.1.1 Modeling of Cracking in Concrete                      | 51 |
| 4.6.2 Steel Reinforcement Material Modeling                   | 51 |
| 4.6.3 FRP Reinforcement Material Modeling                     | 52 |
| 4.6.4 Adhesive Material Modeling                              | 53 |
| 4.6.5 External Steel Strands Modeling                         | 53 |
| 4.6.6 Loading Plates and Supports Material Modeling           | 54 |
| 4.7 Mesh Configuration                                        | 54 |
| 4.8 Interactions                                              | 56 |
| 4.8.1 Contact between Concrete Slab and Adhesive Layer        | 56 |
| 4.8.2 Contact between Concrete Slab and Steel Reinforcement . | 58 |
| 4.8.3 Contact between Concrete Slab and Steel Plates          | 58 |
| 4.9 Loading Conditions                                        | 58 |
| 4.10 Boundary Conditions                                      | 60 |
| 4.11 Failure Criteria                                         | 61 |
| 4.12 Discussion of Results                                    | 61 |
| 4.12.1 Finite Element Analysis of the Tested Slabs            | 62 |
| 4.12.2 Slabs Strengthened by External Prestressing Strands    | 65 |
| 4.12.3 Slabs Strengthened by External Prestressing            |    |
| CFRP Laminates                                                | 75 |
|                                                               |    |
| Chapter 5: PARAMETRIC STUDY                                   | 88 |
| 5.1 Parameters Selection                                      | 88 |

| 5.2 Parametric Study Database Assembly                          | 88         |
|-----------------------------------------------------------------|------------|
| 5.3 Material Properties                                         | 89         |
| 5.3.1 Concrete properties                                       | 89         |
| 5.3.2 Steel Reinforcement                                       | 89         |
| 5.3.3 CFRP Dimensions and Properties                            | 90         |
| 5.3.4 Steel Strands Properties                                  | 90         |
| 5.4 Slab Design Criteria                                        | 90         |
| 5.4.1 Steel Strands and CFRP Laminates Distribution             | 91         |
| 5.4.1.1 Slabs without Drop Panels                               | 91         |
| 5.4.1.2 Slabs with Drop Panels                                  | 92         |
| 5.5 Parametric Study Slabs Analysis and Discussion of Results . | 116        |
| 5.5.1 Control Slabs Analysis                                    | 119        |
| 5.5.2 Slabs Strengthened Using Prestressing Steel Strands       | 125        |
| 5.5.2.1 Slab S-3-ND-S1                                          | 126        |
| 5.5.2.2 Slab S-3-ND-S2                                          | 149        |
| 5.5.2.3 Slabs S-3-D-S1 and S-3-D-S2                             | 152        |
| 5.5.2.4 Slabs S-4-ND-S1 and S-4-ND-S2                           | 155        |
| 5.5.2.5 Slabs S-4-D-S1 and S-4-D-S2                             | 158        |
| 5.5.3 Slabs Strengthened Using Prestressing CFRP laminates      | 161        |
| 5.5.3.1 Slabs S-3-ND-C1 and S-3-ND-C2                           | 161        |
| 5.5.3.2 Slabs S-3-D-C1 and S-3-D-C2                             | 164        |
| 5.5.3.3 Slabs S-4-ND-C1 and S-4-ND-C2                           | 167        |
| 5.5.3.4 Slabs S-4-D-C1 and S-4-D-C2                             | 170        |
| 5.5.4 Comparison between Slabs Strengthened using Pr            | estressing |
| Steel Strands and Prestressing CFRP Laminates                   | 172        |
| 5.5.4.1 Three Span Slabs without Drop Panels                    | 172        |
| 5 5 4 2 Three Span Slabs with Drop Panels                       | 175        |

| 5.6 Concluding Remarks from The Conducted Parametric Study177     |
|-------------------------------------------------------------------|
| 5.6.1 Advantages of Strengthening Indeterminate RC Slabs using    |
| Prestressed Steel Strands and Prestressed CFRP Laminates          |
| 5.6.2 Disadvantages of Strengthening Indeterminate RC Slabs using |
| Prestressed Steel Strands and Prestressed CFRP Laminates          |
| 5.6.3 Important Precautions Concerning the Strengthening          |
| techniques178                                                     |
| 5.6.3.1 Initial Separation for the CFRP Laminate                  |
| 5.6.3.2 Selection of a Proper Eccentricity for the Steel          |
| Strands                                                           |
|                                                                   |
| Chapter 6: SUMMARY AND CONCLUSIONS181                             |
| 6.1 Summary                                                       |
| 6.2 Conclusions                                                   |
| 6.3 Recommendations for Researches in Future                      |
|                                                                   |
| REFERENCES 180                                                    |

### LIST OF FIGURES

| Figure 2.1-Stress vs. strain characteristics of FRPs, prestressing steel and                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|
| mild steel materials (Rizkalla, S. et al. 2003)                                                                                   |
| <b>Figure 2.2(a)</b> -Unidirectional FRP laminates                                                                                |
| Figure 2.2(b)-Difference between unidirectional laminates and two                                                                 |
| directional fibers                                                                                                                |
| Figure 2.3-Different modes of failure for RC beams externally                                                                     |
| strengthened by FRP bonded strips (Teng, J. G. et al. 2001)16                                                                     |
| Figure 2.4-Effect of prestressed and non-prestressed laminates on                                                                 |
| flexural capacity (El-Hacha, R. 2004)19                                                                                           |
| Figure 2.5-Two-way RC slabs strengthened by prestressing or non-                                                                  |
| prestressing CFRP sheets (Kim, Y. J. et al. 2008)20                                                                               |
| Figure 2.6-Mechanism of failure of RC beams strengthened by CFRP                                                                  |
| strips with respect to post-tensioning level (You, Y. C. et al. 2005)22                                                           |
| <b>Figure 2.7</b> - Statically determinate prestressed beam                                                                       |
| <b>Figure 2.8-</b> Moment due to prestressing in statically indeterminate RC beam                                                 |
| Figure 2.9- Three span continuous beam strengthened by prestressing                                                               |
| plain bars having V-shape (Lee, SH. et al. 2015)30                                                                                |
| Figure 2.10-Continuous two span slab strengthened using external                                                                  |
| prestressing steel strands (Abu Gazia, M. et al., 2015)31                                                                         |
| Figure 3.1-Concrete dimensions and reinforcement details of control slab                                                          |
| of the first set SP1 (Abu Gazia, M. et al., 2015)33                                                                               |
| Figure 3.2 Concrete dimensions and reinforcement details of control                                                               |
| slab SP1' of the second set (El Sefy, M. 2015)34                                                                                  |
| <b>Figure 3.3</b> - Slabs SP2, SP3 and SP4 strengthened using prestressed mono steel strands (Abu Gazia, M. <i>et al.</i> , 2015) |

| <b>Figure 3.4</b> - Loading scheme for the tested slabs (Abu Gazia, M. <i>et al.</i> , |
|----------------------------------------------------------------------------------------|
| 2015) and (El Sefy, M. 2015)                                                           |
| Figure 4.1- Full Newton-Raphson method (cervenka et al. 2012)46                        |
| Figure 4.2-Modified Newton- Raphson method (cervenka et al. 2012)                      |
| 46                                                                                     |
| <b>Figure 4.3</b> -FE models sample used to simulate the strengthened slabs46          |
| Figure 4.4- The contacts and internal reinforcement in the FE model47                  |
| Figure 4.5-The 20 noded solid brick element (Cervenka et al. 2012) 48                  |
| <b>Figure 4.6</b> -Truss element geometry (Cervenka <i>et al.</i> 2012)49              |
| Figure 4.7- Steel reinforcement bilinear stress-strain law (Cervenka et al.            |
| 2012)52                                                                                |
| <b>Figure 4.8</b> - FRP linear stress-strain law (Cervenka <i>et al.</i> 2012)53       |
| Figure 4.9- Smeared reinforcement definition (Cervenka et al. 2012) 53                 |
| <b>Figure 4.10</b> -3D view of external cable of slab SP454                            |
| <b>Figure 4.11</b> - 3D view for concrete slab mesh                                    |
| <b>Figure 4.12</b> -3D view for loading plate mesh                                     |
| <b>Figure 4.13</b> -3D view for CFRP laminate mesh                                     |
| Figure 4.14- Interface elements failure surface (Cervenka et al. 2012)57               |
| Figure 4.15- Behavior of interface model, a- shear, b- tension (Cervenka               |
| et al.2012)58                                                                          |
| <b>Figure 4.16</b> - Load Applied for the slabs                                        |
| <b>Figure 4.17</b> - Prestressing of CFRP laminates                                    |
| Figure 4.18- The concrete slab, anchorage zone and the supporting steel                |
| plates of the FE model60                                                               |
| <b>Figure 4.19</b> - Uniform load on full scale slab.                                  |
| <b>Figure 4.20</b> - Restraining the plate by hinged support                           |
| <b>Figure 4.21</b> - Restraining the plate by roller support                           |

| Figure 4.22- Load-deflection relationship for SP1             | 65        |
|---------------------------------------------------------------|-----------|
| Figure 4.23- Load- steel strain relationship for SP1          | 65        |
| Figure 4.24- Load-deflection relationship for SP2             | 67        |
| Figure 4.25- Load-steel strain relationship for SP2           | 68        |
| Figure 4.26- Load-strand strain relationship for SP2          | 68        |
| Figure 4.27- Load-deflection relationship for SP3             | 69        |
| Figure 4.28- Load-steel strain relationship for SP3           | 69        |
| Figure 4.29- Load-strand strain relationship for SP3          | 70        |
| Figure 4.30- Load-deflection relationship for SP4             | 71        |
| Figure 4.31- Load-steel strain relationship for SP4           | 71        |
| Figure 4.32- Load- strand strain relationship for SP4         | 71        |
| Figure 4.33- The cracks pattern along the slab length for SP2 | 73        |
| Figure 4.34- The cracks pattern along the slab length for SP1 | (control  |
| slab)                                                         | 73        |
| Figure 4.35- The deformed shape with crack pattern for SP2    | 73        |
| Figure 4.36- Stress in the strand for SP3                     | 74        |
| Figure 4.37- Stress in internal steel reinforcement for SP4   | 74        |
| Figure 4.38- The position of the measured strains in the CFRP | laminates |
| for all the strengthened slabs (SP5, SP6, SP7, SP8 and SP9)   | 75        |
| Figure 4.39- Load-deflection relationship for SP5             | 76        |
| Figure 4.40- Load-steel strain relationship for SP5           | 76        |
| Figure 4.41- Load-CFRP strain relationship for SP5            | 76        |
| Figure 4.42- Load-deflection relationship for SP6             | 78        |
| Figure 4.43- Load-steel strain relationship for SP6           | 78        |
| Figure 4.44- Load-CFRP strain relationship for SP6            | 78        |
| Figure 4.45- Load-deflection relationship for SP7             | 79        |
| <b>Figure 4.46</b> - Load-steel strain relationship for SP7   | 80        |

| <b>Figure 4.47</b> - Load-CFRP strain relationship for SP7               | 80     |
|--------------------------------------------------------------------------|--------|
| <b>Figure 4.48</b> - Load-CFRP strain relationship for SP7               | 80     |
| Figure 4.49- Load-CFRP strain relationship for SP7                       | 81     |
| Figure 4.50- Load-deflection relationship for SP8                        | 82     |
| Figure 4.51- Load-steel strain relationship for SP8                      | 82     |
| <b>Figure 4.52</b> - Load-CFRP strain relationship for SP8.              | 83     |
| <b>Figure 4.53</b> - Load-CFRP strain relationship for SP8.              | 83     |
| <b>Figure 4.54</b> - Load-CFRP strain relationship for SP8.              | 83     |
| <b>Figure 4.55</b> - Load-CFRP strain relationship for SP8.              | 84     |
| <b>Figure 4.56</b> - Load-deflection relationship for SP9.               | 85     |
| <b>Figure 4.57</b> - Slabs SP5, SP6 strengthening scheme and position of |        |
| CFRP                                                                     | 86     |
| Figure 4.58- Debonding zones in the experimental slab SP6                | 86     |
| <b>Figure 4.59</b> - Debonding zones in the FEM of SP6.                  | 86     |
| Figure 5.1-Full scale slab including the cut area used in finite el      | ement  |
| modeling                                                                 | 95     |
| Figure 5.2- 3-span continuous control slab and the internal              | steel  |
| reinforcement                                                            | 96     |
| Figure 5.3- 3-span continuous control slab with drop panel ar            | nd the |
| internal steel reinforcement.                                            | 97     |
| Figure 5.4- 4-span continuous control slab and the internal              | steel  |
| reinforcement                                                            | 98     |
| Figure 5.5- 4-span continuous control slab with drop panel ar            | nd the |
| internal steel reinforcement.                                            | 99     |
| Figure 5.6- 3-span continuous slab strengthened using prestressed        | mono   |
| steel strand (scheme 1)                                                  | 100    |