

Cairo University Faculty of Veterinary Medicine

Prevalence and Molecular Characterization of *Mycobacterium* avium subsp. *Paratuberculosis* in Raw milk of dairy herds.

A Thesis submitted by

Zeinab Ibrahim Ali Ali

(BVSc, Cairo University, 2010; MVSc, Cairo University, 2013)

For the degree of the Ph.D. (Hygiene and control of milk and its products)

Under Supervision of

Adel M. Saudi

Professor of Milk Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Egypt

Adel M. Talaat

Professor of Microbiology, University of Wisconsin-Madison, USA

(2019)

Cairo University
Faculty of Veterinary Medicine

Supervision sheet

Prof. Dr. Adel M. Saudi

Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Cairo University Egypt

Prof. Dr. Adel M. Talaat

Professor of Microbiology School of Veterinary Medicine University of Wisconsin-Madison USA

(2019)

Cairo University Faculty of Veterinary Medicine Food Hygiene & control Department

Name: Zeinab Ibrahim Ali Ali Date of birth: 19/3/1988 Nationality: Egyptian

Degree: Ph.D

Specialization: Hygiene and control of milk and its products.

Title of the thesis: Prevalence and Molecular Characterization of *Mycobacterium*

avium subsp. Paratuberculosis in Raw milk of dairy herds.

Supervision:

Dr. Adel M. Saudi Professor of Milk Hygiene and Control, Faculty of

Veterinary Medicine, Cairo University

Dr. Adel M. Talaat Professor of Microbiology, school of Veterinary

Medicine, University of Wisconsin-Madison, USA

Abstract

The main objective of the study is to investigate the existence of different members of Non-Tuberculous Mycobacteria (NTM) with special reference to Mycobacterium avium subspecies paratuberculosis (MAP) in raw milk at the farm level and to address a mean of control on M. paratuberculosis in milk and dairy product that is safe for consumer. Interestingly, 5 different NTM species were identified and confirmed genotypically including, M. fortuitum, M. avium ssp. hominissuis, M. abscessus, M. simiae and M. avium ssp. Paratuberculosis. In tank milk, M. fortuitum was the predominant one with 48% predominance compared to M. simiae which detected in only 4% of the samples. On the other hand, M. abscessus and M. fortuitum were obtained from 77% and 23% of the examined milk filters, respectively. Surprisingly, M. avium subsp. hominissuis, Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) and M. simiae were isolated from 16.7%, 10.4% and 4% of the examined tank milk samples, respectively, but not from milk filters. To investigate the impact of natural bacteriocins on the survival of different strains of M. paratuberculosis in milk, nisin was tested. Surprisingly, nisin had a minimum inhibitory concentration (MIC) that was higher against the laboratory strain (M. paratuberculosis K10) with 500 U/ml compared to other field isolates (e.g. M. paratuberculosis 4B and JTC 1281) with 15 U/ml respectively. In milk, the M. paratuberculosis cultures were inhibited after treatment with permissible levels of nisin at 4°C and 37°C. Using both fluorescent and scanning electron microscopy (SEM), we were able to identify clear defects on bacterial cell walls of treated cultures.

Key words: Non-Tuberculous Mycobacteria, *M. paratuberculosis*, Raw milk, Milk filters Nisin, Johne's disease.

Dedication

To my lovely husband, Emad, for your patience, love, friendship.

To my pretty princess Rahma and Nour for letting me experience the kind of love that people freely die for.

And also, to my Beloved Parents, my sisters Latafa, Aida and Hoda and my brothers Hamdy, Sayed, Mohamed and Eid for your endless, unconditional love and support.

ACKNOWLODGMENT

I am grateful to the Almighty God the most beneficent for his graciousness bestowed upon me and the opportunity given to study and complete this thesis.

No words can adequately express my sincere gratitude and great appreciation to my supervisor **Prof. Dr. Adel M. Saudi** who offered me a lot of his time and who devoted his experience to provide me with the best possible pieces of advice and suggestion to this work.

My deepest thanks to my supervisor **Prof. Dr. Adel M. Talaat** for his precious supervision, helpful suggestion, kind advices, and continuous encouragement. I would also like to thank all of the members of the Talaat lab at University of Wisconsin-Madison, USA, past and present for their guidance, support, and friendship over the two years I spent there.

I would like to thank heartily the all members of Food Hygiene and control Dept. Cairo University.

And lastly, I would like to thank my family and friends, too many to name, for their mazing, ever-present encouragement and support throughout this journey.

CONTENTS

CHAPTER (1)	1
INTRODUCTION	2
Chapter (2)	7
REVIEW OF LITERATURE	8
Non-Tuberculous Mycobacteria (NTM)	8
THE EMERGING PROBLEM OF NTM IN FOOD	10
Mycobacterium avium subsp. Paratuberculosis (MAP)	12
MAP BACKGROUND	12
THE MAP ORGANISM	13
JOHNE'S DISEASE	14
Transmission of Johnes disease	15
Crohn's disease	16
ASSOCIATION BETWEEN MAP AND CROHN'S DISEASE	17
MAP RESISTANCE TO PASTEURIZATION	22
MILK AND TRANSMISSION OF MAP.	24
LACTIC ACID BACTERIA	26
ANTIMICROBIAL PEPTIDES PRODUCED BY LAB	28
CLASSIFICATION OF BACTERIOCINS	29
APPLICATION OF BACTERIOCINS IN THE PRESERVATION OF DAIRY PRODUCTS	30
NISIN	31
NISIN VARIANTS	32
Mode of action of Nisin:	34
APPLICATIONS OF NISIN	35
CHAPTER (3)	36
• •	
PUBLISHED PAPERS	36
CHAPTER (3.1)	37
GENOTYPIC ANALYSIS OF NON-TUBERCULOUS MYCOBACTERIA IN RAW MILK FROM WISCONSIN	38
Abstract:	39
Introduction:	
Material and methods.	41
Results	
Discussion:	
References:	
Cuaptro (2.2)	- -
CHAPTER (3.2)	5/

The Inhibitory Effect of Nisin on <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i>	
AND ITS IMPACT ON MYCOBACTERIAL CELL WALL.	58
Abstract	59
Introduction	60
MATERIALS AND METHODS	63
Results	67
DISCUSSION	71
References	80
Chapter (4)	86
DISCUSSION	87
Chapter (5)	94
CONCLUSION AND RECOMENDATION	95
Chapter (6)	99
SUMMARY	100
Chapter (7)	103
REFERENCES	104

List of Abbreviations

ATP = Adenosine triphosphate

BTM = Bulk Tank Milk

CD = Crohn's disease

CFU = Colony Forming Unit

CTAB = Cetyl Trimethyl Ammonium Bromide

DNA = Deoxyribonecleic acid

FDA = Food and Drug Administration

gDNA = genomic DNA

GMPs = Good Manufacturing Practices

GRAS = Generally Regarded As Safe

HACCP = Hazard Analysis and Critical Control Point

HEYM = Herrold's Egg Yolk Medium

HIV = Human immunodeficiency Virus

HPC = 1- Hexadecylpyridinium Chloride

HTST = High Temperature Short Time

JD = Johne's disease

LAB = Lactic Acid Bacteria

LJ = Lowenstein Johnson

MABA = Microplate Alamar Blue Assay

MAC = Mycobacterium avium complex

MAP = Mycobacterium avium subsp. Paratuberculosis

MIC = Minimum Inhibitory Concentration

MJ = Mycobactin J

MTC = Mycobacterium tuberculosis complex

NTM = Non-Tuberculous Mycobacteria

OIE = Office International des Epizooties

PBS-T = phosphate-buffered saline containing Tween 20

PCR = Polymerase Chain Reaction

PI = Propidium Iodide

SDS = Sodium Dodecyl Sulfate

SEM = Scanning Electron Microscopy

U/ml = International Unit/milliliter

WHO = World Health Organization

ZN = Ziehl-Neelsen

List of tables

No. of Table	Contents of tables	Page
1	Chapter 2. Worldwide distribution of Non-Tuberculous Mycobacteria (NTM) isolated from milk and dairy products.	11
2	Mycobacterium avium subsp. Paratuberculosis (MAP) prevalence in milk & dairy products.	21
1	Chapter 3.1. Number and percentage of positive samples of NTM and MAP detected by culture and confirmed by PCR.	50
1	Chapter 3.2. The antibacterial activity of nisin expressed as MIC (U/ml) determined by the microplate Alamar blue assay (MABA) assay.	74

List of figures

No. of Figure	Contents of figures	Page
1	Chapter 2. Lactic acid bacteria products.	28
2	Universal scheme of bacteriocin classification.	29
3	Classification of bacteriocins.	30
4	Schematic presentation of the structure of nisin A.	31
5	General mode of action of nisin.	35
1	Chapter 3.1. Evolutionary tree of NTM isolates from tank milk (identified as T) and milk filters (identified as F) isolates from a Wisconsin dairy herd.	51
1	Chapter 3.2. Growth kinetics of nisin-treated <i>M.paratuberculosis</i> cultures over time.	75
2	Growth kinetics of two <i>M. paratuberculosis</i> strains in milk following nisin treatment at both low and high temperatures.	76
3	Percentage of dead mycobacteria as a result of nisin treatment.	77
4	Morphological changes in <i>M. paratuberculosis</i> following treatment with nisin.	78
5	Dimensional differences in Mycobacteria bacilli due to nisin treatment.	79

Chapter (1)

INTRODUCTION

INTRODUCTION

Milk is a highly nutritious food that can be obtained from a variety of animal sources such as cows, goats, sheep and buffalo. However, the high nutrient content of these milks, including proteins, fats, carbohydrates, vitamins, minerals and essential amino acids, all at a near neutral pH with high water activity, provides an ideal environment for the growth of many microorganisms (**Kable** *et al.*, **2016**).

Being a rich and nutritious fluid, milk supports the growth of many microorganisms and host a complex and varied community of bacteria. Therefore, in addition to its endogenous microbiota, once milked it is rapidly colonized by a variety of other microbes coming from the teat canal, udder skin, milking machines, containers and tanks used for its storage, reflecting the farm and the pasture environment as well. Furthermore, contamination with potentially pathogenic bacteria or their toxins in milk can affect the human health. (Quigley et al., 2013).

Milk is safe to consume after pasteurization but is still susceptible to microbe-induced spoilage and quality defects. In contrast, some of the surviving microorganisms in milk contribute beneficially to the organoleptic qualities of fermented dairy products (Kable *et al.*, 2016).

Lactic acid bacteria (LAB) are particularly important because of their positive and negative impacts on fresh and fermented dairy foods (Ledenbach and Marshall, 2009). A wide variety of bacterial species have been detected in raw and minimally processed milk (Quigley et al., 2012).

Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment and are responsible for several diseases in humans and/or animals known as mycobacterioses (Shitaye et al., 2009). More than 140 mycobacterial species are currently described and the number is increasing (Tortoli et al., 2000). NTM infections have been increasing in number over the past decades, especially in immunocompromised and HIV/AIDS patients (Tortoli et al., 2000). A globally disseminated species, contaminating milk, is *Mycobacterium avium* subsp. paratuberculosis. Many other mycobacteria are present in the environment and in food and potable water, and high numbers of cells are often consumed daily over an extended period of time. Generally, although highly resistant to higher temperatures and some disinfectants, mycobacteria are not yet considered to pose a risk as food pathogens. Nevertheless, Non-tuberculous mycobacterioses represent serious infections for immunodeficient persons and food or water can be a vector for their transmission (Hruska and Kaevska, 2012).

Johne's disease, is a chronic granulomatous infection of the intestines of wild and domestic ruminants caused by *Mycobacterium avium* subspecies *paratuberculosis* (*M. paratuberculosis*) (Collins, 1997). Johne's disease can be transmitted from cows to calves through ingestion of *M. paratuberculosis*-infected colostrum or milk that can be contaminated with *M. paratuberculosis* (Grant *et al.*, 2002a). Milk obtained under aseptic clean conditions from asymptomatic cow infected with Johne's disease was found to contain less than 10 CFU/50