

Quality of Life in Type 1 Diabetic Children: Relationship to Microvascular Complications and Insulin Treatment Satisfaction

Thesis

Submitted for Fulfilment of PH.D. Degree in Childhood Studies (Child Health and Nutrition) Medical Studies Department

By Hend Helmy Abd El Ghaffar

M.Sc Pediartics- Ain Shams University Assistant Researcher- National Research Centre

Under Supervision of

Dr. Mona Hussein El Samahy

Professor of Paediatrics Faculty of Medicine Ain Shams University

Dr. Abla Galal Khalifa

Professor of Child Health Department of Child Health National Research Centre

Dr. Ehab Mohammed Eid

Professor of Public Health Department of Medical Studies Faculty of Postgraduate Childhood Studies Ain Shams University

Dr. Soheir Abd El Mawgood

Professor of Clinical Pathology Department of Clinical Pathology National Research Centre

Faculty of Postgraduate Childhood Studies
Ain Shams University
2018

سورة البقرة الآية: ٣٢

·♥ * · · Acknowledgement · · · · · · ·

First of all, thanks to Allah the most merciful for guiding me through and giving me the strength to complete this study.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, **Dr. Mona Hussein El Samahy** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for giving me the wonderful opportunity to complete this study under her generous supervision, it is truly an honor.

I would like to express my sincere gratitude and profound respect to my honored professor, **Dr. Ehab Mohammed Eid** Professor of Public Health, Department of Medical Studies, faculty of Postgraduate Childhood Studies, Ain Shams University, for his continuous encouragement and valuable supervision and guidance throughout this study. It has been an honor and privilege to work under his generous supervision.

I wish to express my deepest gratitude to the soul of **Dr. Abla Galal Khalifa** Professor of Child Health, Department of Child Health, National Research Centre, may ALLA have mercy on her for her valuable suggestions, good support and unlimited help.

I am also deeply grateful and would like to express my sincere thanks and gratitude to my dear professor, *Dr. Zeinab Mohammed Mounir* Professor of Child Health, Department of Child Health, National Research Centre, for her great help and support and her continuous guidance, correction and explanation which helped me to finish this study.

I wish to express my deep gratitude to **Dr. Soheir Abd El Mawgood** Professor of clinical pathology, Department of clinical pathology, National Research Centre, for her valuable help and the assistance she offered me in the laboratory part of this study.

A grateful appreciation to **Dr.Mohamed Abdel Moneim** researcher of pediatrics, Department of Child Health, National Research Centre, for his help, encouragement and support.

I would like to express my grateful thanks to all staff members of **Child Health Department, National Research Center.**

Contents

Title Page N		
Table of contents	i	
List of Tables	ii	
List of Figures	V	
List of Abbreviations	xi	
Abstract	xvii	
Introduction	1	
Aim of the study	4	
Review of Literature		
• Diabetes Mellitus	5	
• Heat Shock Proteins	65	
• Health Related Quality Of Life	90	
Subjects and Methods	119	
Results	143	
Discussion	184	
Summary	210	
Conclusion	215	
Recommendations	216	
References	219	
Appendices		
• Appendix I: The Pediatric Quality of Life Inventory TM (PedsQL TM)	290	
• Appendix II: Insulin Treatment Satisfaction Questionnaire (ITSQ)	306	
Arabic Summary	١	
Arabic Abstract	Í	

List of tables

Table No.	Table Title	Page No.
Table (1)	Etiologic classification of diabetes mellitus	5
Table (2)	Clinical characteristics of type 1, type 2 and monogenic diabetes in children and adolescents.	6
Table (3)	Staging of type 1 diabetes.	25
Table (4)	Criteria for diagnosis of diabetes mellitus	27
Table (5)	Plasma blood glucose and HbA _I c goals for type 1 diabetes by age group.	32
Table (6)	Types of insulin subcutaneous preparations	37
Table (7)	The different socioeconomic levels.	124
Table (8)	Insulin treatment satisfaction questionnaire scales	130
Table (9)	Demographic and clinical data of the studied diabetic and control groups.	141
Table (10)	Laboratory data of the studied diabetic and control groups.	141
Table (11)	The child self-reports and parent proxy-reports of PedsQL™ 4.0 Generic Core Scales (GCS) of the studied diabetic and control groups.	142
Table (12)	The child self-reports and parent proxy-reports of PedsQL™ 3.0 Diabetic module of the studied diabetic group.	143
Table (13)	Insulin treatment satisfaction questionnaire subdomain and total scores of the studied diabetic group.	143
Table (14)	Comparison between the three studied groups as regards their sociodemografic data.	144
Table (15)	Comparison between the three studied groups as regards their anthropometric and blood pressure measurements.	145
Table (16)	Comparison between the two studied diabetic groups in terms of their metabolic control.	147
Table (17)	Frequency of microvascular complications among studied diabetics.	149
Table (18)	Comparison between the three studied groups as regards their mean serum HSP27 levels.	151
Table (19)	Levels of serum HSP27 in different microvascular complications.	152

List of tables (cont.)

Table No.	Table Title	Page No.
Table (20)	Diagnostic accuracy (Area under the curve AUC) Sensitivity, specificity, +PV, -PV and cut-off value of HSP27 between control group and diabetic group (complicated + non complicated).	154
Table (21)	Diagnostic accuracy (Area under the curve AUC) Sensitivity, specificity, +PV, -PV and cut-off value of HSP27 between complicated and non-complicated diabetic patients.	155
Table (22)	Correlation between HSP27 with demographic and clinical variables in non-complicated & complicated patients respectively.	156
Table (23)	Correlation between HSP27 with metabolic control indices of type I diabetes among non-complicated & complicated patients respectively.	156
Table (24)	Multiple regression analysis for independent predictors of HSP27 among the studied diabetic patients.	160
Table (25)	Comparison between the studied diabetic and healthy children (8-12 years) and adolescents (13-18 years) as regards their sociodemografic data.	161
Table (26)	Comparison between the studied diabetic and healthy children (8-12 years) and adolescents (13-18 years) as regards their anthropometric and blood pressure measurements.	162
Table (27)	Comparison between studied diabetic and healthy children (8-12 years) and adolescents (13-18 years) concerning their child self-reports and parent proxyreports of PedsQL TM 4.0 Generic Core Scales (GCS) scores.	163
Table (28)	Differentiation between child self-report and parent proxy- report of studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and Diabetic module scores.	165
Table (29)	Differentiation between male and female of studied diabetic children (8-12 years) and Adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and PedsQL™ 3.0 Diabetic module.	167

List of tables (cont.)

Table No.	Table Title	Page No.
Table (30)	Comparison between studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and PedsQL™ 3.0 Diabetic module scores.	169
Table (31)	Comparison between complicated and non-complicated groups concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and PedsQL™ 3.0 Diabetic module scores.	170
Table (32)	Comparison between studied diabetic patients with HbA1c < 8% and studied diabetic patients with HbA1c ≥ 8% concerning their insulin treatment satisfaction subdomain and total scores.	171
Table (33)	Comparison between studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their insulin treatment satisfaction subdomain and total scores.	172
Table (34)	Insulin treatment satisfaction questionnaire subdomain and total scores with different insulin treatment varieties.	173
Table (35)	Correlation between Paediatric Quality of Life Inventory scores with demographic and clinical characteristics in the studied diabetic patients.	175
Table (36)	Correlation between Paediatric Quality of Life Inventory scores with metabolic control parameters of type I diabetes in the studied diabetic patients.	176
Table (37)	Correlation between Paediatric Quality of Life Inventory scores and total score of insulin treatment satisfaction questionnaire.	179
Table (38)	Correlation between Paediatric Quality of Life Inventory scores and serum heat shock protein27 levels in the studied diabetic patients.	179

List of Figures

Fig. No.	Figure Title	Page No.
Fig. (1)	The natural history of type 1 diabetes.	11
Fig. (2)	Environmental triggers and protective factors for islet autoimmunity and promoters of progression to type 1 diabetes	15
Fig. (3)	Pathogenesis of type 1 diabetes.	23
Fig. (4)	Staging of T1DM.	25
Fig. (5)	Schematic representation of the three stages of prevention trials.	29
Fig. (6)	Insulin delivery devices.	38
Fig. (7)	Insulin pump.	39
Fig. (8)	Inhaled insulin device.	40
Fig. (9)	Islet cell transplantation line.	41
Fig. (10)	Stem cell transplantation.	42
Fig. (11)	The medical equipment approach to an artificial pancreas.	43
Fig. (12)	Closed-loop insulin delivery.	44
Fig. (13)	The Bio-artificial pancreas with Islet Sheet technology.	45
Fig. (14)	Gene therapy approach of type 1 diabetes.	46
Fig. (15)	Hyperglycemic hyperosmolar syndrome (HHS)	51
Fig. (16)	Stages of nonproliferative diabetic retinopathy (NPDR)	57
Fig. (17)	Sequelae of proliferative diabetic retinopathy (PDR)	58
Fig. (18)	(a) Stepwise approach to diagnosis and management of diabetic peripheral neuropathy (DPN).(b) Integrating pathophysiology and the sites of action of pathogenetic drugs	64
Fig. (19)	Upregulation of heat shock proteins (HSPs) in response to various stressors	68
Fig. (20)	(A) Schematic representation of HSP27 structure and putative phosphorylation sites.(B) Structural organization of HSP27 upon reversible phosphorylation.	72
Fig. (21)	a- HSP27and normal cellular functions.b- HSP27 and pathologies.	74
Fig. (22)	Some of the major mechanisms of HSP27 on disease states.	75
Fig. (23)	Comparison between the three studied groups as regards their sex distribution and socioeconomic levels.	144

Fig. No.	Figure Title	Page No.
Fig. (24)	Comparison between the three studied groups as regards their anthropometric measurements.	146
Fig. (25)	Comparison between the three studied groups as regards their systolic and diastolic blood pressure.	146
Fig. (26)	Comparison between the two studied diabetic groups in terms of their age of onset of disease and disease duration.	148
Fig. (27)	Comparison between the two studied diabetic groups in terms of their mean random blood glucose.	148
Fig. (28)	Comparison between the two studied diabetic groups in terms of their HbA1c.	148
Fig. (29)	Comparison between the two studied diabetic groups in terms of their mean Insulin dose.	148
Fig. (30)	Frequency of microvascular complications among studied diabetics.	150
Fig. (31)	Comparison between the three studied groups as regards their mean serum HSP27 levels.	151
Fig. (32)	Plots of mean and 95%Confidence intervals of serum HSP27 showing no overlap between the three studied groups.	152
Fig. (33)	Levels of serum HSP27 in different microvascular complications.	153
Fig. (34)	Receiver operating characteristic curve (ROC) for cut off level of serum HSP27 between control group and diabetic group (complicated and non-complicated).	154
Fig. (35)	Receiver operating characteristic curve (ROC) for cut off level of serum HSP27 between complicated and non-complicated diabetic patients.	155
Fig. (36)	Scatter diagram showing significant negative correlation between HSP27 level and age in non-complicated cases.	157
Fig. (37)	Scatter diagram showing significant negative correlation between HSP27 level and BMI in non-complicated cases.	157
Fig. (38)	Scatter diagram showing significant negative correlation between HSP27 level and DBP in non-complicated cases.	157
Fig. (39)	Scatter diagram showing significant negative correlation between HSP27 level and disease duration in non-complicated cases.	157

Fig.	Figure Title	Page No.
Fig. (40)	Scatter diagram showing significant negative correlation between HSP27 level and Mean Random Blood Glucose in non-complicated cases.	157
Fig. (41)	Scatter diagram showing significant negative correlation between HSP27 level and HbA1c in non-complicated cases.	157
Fig. (42)	Scatter diagram showing significant negative correlation between HSP27 level and Mean insulin dose in non-complicated cases.	158
Fig. (43)	Scatter diagram showing significant negative correlation between HSP27 level and number of Diabetic ketoacidosis attacks in non-complicated cases	158
Fig. (44)	Scatter diagram showing significant negative correlation between HSP27 level and number of hypoglycemic attacks in non-complicated cases.	158
Fig. (45)	Scatter diagram showing significant negative correlation between HSP27 level and age in complicated cases.	159
Fig. (46)	Scatter diagram showing significant negative correlation between HSP27 level and disease duration in complicated cases.	159
Fig. (47)	Scatter diagram showing significant negative correlation between HSP27 level and Mean Random Blood Glucose in complicated cases.	159
Fig. (48)	Scatter diagram showing significant negative correlation between HSP27 level and HbA1c in complicated cases.	159
Fig. (49)	Scatter diagram showing significant negative correlation between HSP27 level and number of Diabetic ketoacidosis attacks in complicated cases.	159
Fig. (50)	Scatter diagram showing significant negative correlation between HSP27 level and number of hypoglycemic attacks in complicated cases.	159
Fig. (51)	Comparison between studied diabetic and healthy children (8-12 years) and adolescents (13-18 years) concerning their Child self-reports of PedsQL™ 4.0 Generic Core Scales (GCS).	164

Fig. No.	Figure Title	Page No.
Fig. (52)	Comparison between studied diabetic and healthy children (8-12 years) and adolescents (13-18 years) concerning their Parent proxy-reports of PedsQL™ 4.0 Generic Core Scales (GCS).	164
Fig. (53)	Differentiation between Child self-report and Parent proxy- report of studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS).	166
Fig. (54)	Differentiation between child self-report and parent proxy-report of the studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their PedsQL™ 3.0 Diabetic module.	166
Fig. (55)	Differentiation between male and female of studied diabetic children (8-12 years) and Adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS).	168
Fig. (56)	Differentiation between male and female of studied diabetic children (8-12 years) and Adolescents (13-18 years) concerning their PedsQL™ 3.0 Diabetic module.	168
Fig. (57)	Comparison between studied diabetic children (8-12 years) and Adolescents (13-18 years) concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and PedsQL™ 3.0 Diabetic module scores.	169
Fig. (58)	Comparison between complicated and non-complicated groups concerning their PedsQL™ 4.0 Generic Core Scales (GCS) and PedsQL™ 3.0 Diabetic module scores.	170
Fig. (59)	Comparison between type 1 diabetic patients with HbA1c < 8% and type 1 diabetic patients with HbA1c ≥ 8% concerning their insulin treatment satisfaction subdomain and total scores.	171
Fig. (60)	Comparison between studied diabetic children (8-12 years) and adolescents (13-18 years) concerning their insulin treatment satisfaction subdomain and total scores.	172
Fig. (61)	Insulin treatment satisfaction questionnaire subdomain and total scores with different insulin treatment varieties.	174
Fig. (62)	Scatter diagram showing significant negative correlation between total scale score of PedsQL™ 4.0 Generic Module and age of studied diabetics.	177

Fig. No.	Figure Title	Page No.
Fig. (63)	Scatter diagram showing significant positive correlation between physical health summary score of PedsQL™ 4.0 Generic Module and age of onset of diabetes in studied diabetics.	177
Fig. (64)	Scatter diagram showing significant negative correlation between Physical health summary score of PedsQL TM 4.0 Generic Module and disease duration in studied diabetics.	177
Fig. (65)	Scatter diagram showing significant positive correlation between PedsQL™ 4.0 Generic Core Scales. Psychosocial health score and socioeconomic status in studied diabetics.	177
Fig. (66)	Scatter diagram showing significant negative correlation between PedsQL™ 4.0 Generic Core Scales. Psychosocial health score and body mass index in studied diabetics.	177
Fig. (67)	Scatter diagram showing significant negative correlation between PedsQL™ 4.0 Generic Core Scales. Physical health score and systolic blood pressure in studied diabetics.	177
Fig. (68)	Scatter diagram showing significant negative correlation between physical health score and diastolic blood pressure in studied diabetics.	178
Fig. (69)	Scatter diagram showing significant negative correlation between Treatment adherence score and Mean Random Blood Glucose in studied diabetics.	178
Fig. (70)	Scatter diagram showing significant negative correlation between Treatment adherence score and HbA1c in studied diabetics.	178
Fig. (71)	Scatter diagram showing significant negative correlation between physical health score and number of diabetic ketoacidosis attacks last year prior to the study in studied diabetics.	178
Fig. (72)	Scatter diagram showing significant negative correlation between diabetes symptoms score and number of hypoglycemic attacks last year prior to the study in studied diabetics.	178
Fig. (73)	Scatter diagram showing significant negative correlation between Physical health score and number of hospital admissions last year prior to the study in studied diabetics.	178

Fig. No.	Figure Title	Page No.
Fig. (74)	Scatter diagram showing significant positive correlation between total PedsQL diabetes specific score and total insulin treatment satisfaction score in studied diabetics.	180
Fig. (75)	Scatter diagram showing significant positive correlation between Diabetes symptoms score and total insulin treatment satisfaction score in studied diabetics.	180
Fig. (76)	Scatter diagram showing significant positive correlation between treatment barriers score and total insulin treatment satisfaction score in studied diabetics.	180
Fig. (77)	Scatter diagram showing significant positive correlation between total PedsQL general score and HSP27 level in studied diabetics.	180
Fig. (78)	Scatter diagram showing significant positive correlation between total PedsQL diabetes specific score and HSP27 level in studied diabetics.	180
Fig. (79)	Scatter diagram showing significant positive correlation between treatment adherence score and HSP27 level in studied diabetics.	180

List of Abbreviations

Abbrev.	Full term
°C	The degree Celsius.
A.O.D	Age of onset of disease.
Abs	Antibodies.
ACE	Angiotensin I-converting enzyme.
AGE	Advanced glycation end products.
AKI	Acute kidney injury.
ALE	Advanced oxidized lipid end products.
AMPK	AMP-activated protein kinase.
ANOVA	Analysis of variance.
AOPP	Advanced oxidation protein products.
ATP	Adenosine triphosphate.
AUC	Area under the curve.
BG	Blood glucose.
BGM	Blood glucose monitoring.
BMI	Body mass index.
BMIP	Body mass index percentile.
BSA	Bovine serum albumin.
CAN	Cardiovascular autonomic neuropathy.
CARDS	Computerized Automated Reminder Diabetes System.
CD4+	Cluster of differentiation 4 (T-helper cells).
CD8+	Cluster of differentiation 8 (cytotoxic T-lymphocytes).
CI	Confidence interval.
ClinROs	Clinician-reported outcomes.
Cm	Centimeter.
CMV	Cytomegalovirus.
CRC	Colorectal carcinoma.
CSII	Continuous subcutaneous insulin infusion.
CSR	Child self-reports.
D.D	Disease duration.
Daxx	Death-associated protein 6.
DBP	Diastolic blood pressure.
DCCT	Diabetes Control and Complications Trial.
DCGM-37	Disabkids Chronic Generic Measure-37.
DDT	Dichlorodiphenyltrichloroethane.
DEMPU	Diabetes Endocrine and Metabolism Pediatric Unit.
D-HRQOL	Diabetes specific health related quality of life.
DiaPep277	Hsp60 derived peptide 277.