سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caron-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Me Silve Sil

CLINICAL SIGNIFICANCE OF DETECTION OF TUMOUR SUPPRESSOR GENE DELETION AT 13Q14 BY FISH TECHNIQUE IN CHRONIC LYMPHOCYTIC LEUKEAMIA

Thesis

Submitted in partial fulfillment of the requirements of the

Master degree in

"Clinical pathology"

 \mathcal{B}_{y}

HALA MOHAMED WAFIK IBRAHIM

(M.B.,B.Ch.,)

SUPERVISORS

The

Prof. Dr.

THORAYA EL-SAYED BADAWY

Professor and Head of Clinical Pathology
Department
Faculty of Medicine
Tanta University

Prof. Dr.
EBBAA HUSSEIN EL-SHEIKH

Professor of Internal Medicine Faculty of Medicine Tanta University

Dr.

SAID MOHAMED HAMMAD ABDOU

Lecturer of Clinical Pathology Faculty of Medicine Tanta University

FACULTY OF MEDICINE TANTA UNIVERSITY 2002

Byreic

بيني الله التجمز التحييم

م بای کرد را ری و کرد ایک میراد الم میراد ایک میراد ایک کرد ایک میراد ایک میراد ایک میراد ایک میراد ایک میراد ا میراد میراد ایک میرا

(سورة فصات ، إلمال الم

Acknowled gement

Girst and foremost, thanks to **ALLAH** for giving me the strength to carry out this work.

No word can fulfill the feeling of gratitude and respect I carry to Prof. Dr. THORAYA EL-SAYED BADAWY Professor and head of Clinical pathology Department, faculty of Medicine, Tanta University for her great direction all through this work with a scientific personality and kind heart.

I am greatly honored to express my endless gratitude to Prof. Dr. EBAA HUSSEIN EL-SHEIKH, professor of general Medicine, Faculty of Medicine, Fanta University for her meticulous supervision and revision of the whole text.

I'm greatly indebted to Dr. SAID MOHAMMED HAMMAD ABDOU Lecturer of clinical pathology, Faculty of Medicine, Tanta University. To him I wish to express my projound gratitude and deep thanks for his constructive guidance and general help which was the paramount axes in the initiation and completion of this work.

Thanks to Assistant Prof. Dr. NAHLA FARHAT clinical pathology Acculty of Medicine, Alexandria University for her great help.

CONTENTS

	Sage.
INTRODUCTION	1
AIM OF THE WORK REVIEW OF LITERATURE	3
Definition and History	4
 Etiology and pathogenesis 	5
■ Incidence and Epidemiology	7,
 Clinical Findings 	8
■ Laboratory Findings	12
 Prognosis 	
■ Disease Complications	
Cytogenetic Findings in CLL	
Cytogenetic Techniques	51
PATIENTS AND METHODS	63
RESULTS	79
DISCUSSION	123
SUMMARY & CONCLUSIONS	133
RECOMMENDATIONS	135
REFERENCES	130
ARABIC SUMMARY	,

LIST OF ABBREVIATIONS

AIHA : Auto-immune haemolytic anemia.

CMV : Cytomegalo virus

ECOG: Eastern cooperative oncology group.

FACS: Activated cell sorter.

Fas I : Exogenous human fas ligand

FISH : Fluorescense in situ hybridization

LCDt : Lymphocyte count doubling time

LPDs : Lympho-proliferative disorders

PCD: Programmed cell death

PLL: Pro Imphocytes. Leukemia

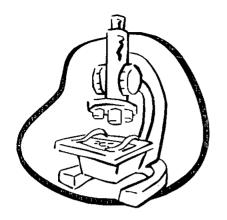
RBI : Retino blastoma gene.

RT: Richter transformation

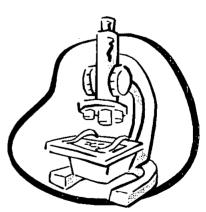
SIg : Surface immunoglobulin

UCB: umbilical cord blood

WCPP: Whole chromosome painting probe.


LIST OF TABLES

No.	$ ho_{c}$	age
Table (1):	[ECOG] score	11
Table (2):	Antibodies used for the diagnosis of lymphoid leukemias	16
Table (3):	Diagnostic criteria of chronic lymphocytic leukemia	19
Table (4):	Staging systems used for chronic lymphocytic leukemia	20
Table (5):	Clonal chromosomal aberrations in CLL	50
Table (6):	Table (6) Antibodies panel	77
Table (7):	The individual clinical Data of B-CLL patients group:	80
Table (8): Se	ummary of the clinical data of B-CLL cases	81
Table (9):	Laboratory data of B-CLL cases	83
Table (10):	Summary of laboratory data of B-CLL cases	84
Table (11):	Immunophenotype of B-CLL cases with FISH results.	86
Table (12):	Summary of immunophenotype of B-CLL cases	87
Table (13):	Statistical analysis of clinical data between groups	90
Table (14):	Statistical analysis of laboratory data between groups	91
Table (15):	Comparison between cases and controls as regards FISH	92
Table (16):	Summary of the clinical data in 13q14 deletion positive cases	94
Table (17):	Summary of laboratory data in 13q14 deletion positive cases (n=5).	96
Table (18):	Statistical analysis of clinical data in 13q14 deletion positive and non-positive cases	97
Table (19):	Statistical analysis of laboratory data in 13q14 deletion positive and non-positive cases.	98
Table (20): Table (21):	Results of FISH for 13q14 deletion in the control group Results of 13q14 deletion of patients by FISH	100 101
Table (22):	Correlation study between 13q14 deletion +ve and lymphocyte morphology	102
Table (24):	Data from CLL/PLL patients with 13q14 deletion detected by FISH according to prolymphocyte % and immunophenotypic markers Duration of follow up of 20 cases of B-CLL	103 105
1 a Die (24):	Duration of follow up of 20 cases of D-CLD	


LIST OF FIGURE

No.	Pa	ge
Fig (A)	Fluorescence In-situ Hybridization (FISH)	68
Fig. (B)	13q14.3 (D13S19, D13S25)	69
Fig. (C)	Signal counting Guide	74
Fig. (D)	Signal counting Guide	75
Fig. (1)	OAS in relation to RIA stage	106
Fig. (2)	OAS in relation to FISH	107
Fig. (3)	OAS in relation to CLL	107
Fig. (4)	Clinical data of B-CLL cases	108
Fig. (5)	Clinical data of B-CLL cases	109
Fig. (6)	Clinical data of B-CLL cases	110
Fig. (7)	Rai staging	111
Fig. (8)	Binet Classification	112
Fig. (9)	Classification According to immunophenotyping	113
Fig. (10)	Data from CLL/PLL patients with 13q14 deletion	114
Fig. (11)	Immunophenotype of B-CLL cases	115
Fig. (12)	CON & CD7 Immunophenotype	116
Fig. (13)	CD5 & CD23 Immunophenotype	117
Fig. (14)	FMC7 & LAMBDA Immunophenotype	118
Fig. (15)	Metaphase showing splitting of 2 normal copies of (13qter control probe) (green) and 2 normal copies of 13q 14.3 D13S 319-D13S25 (Red) used as control for metaphase	119
Fig. (16)	Interphase showing 2 normal copies of (13q ter control probe) (green) and 2 normal copies of 13q 14.3 D13S319- D13S25 (Red) used as control for metaphase	120
Fig. (17)	Interphase nucleus from patient No. Three showing 2 green signals (13q ter control probe) and only one red signal (13q 14.3 D 13 S 319-D13S25) and the other red signal deleted	121
Fig. (18)	Interphase nucleus from patient No. Six showing 2 green signals (13q ter control probe) and only one red signal (13q 14.3 D 13 S	122

MTRODUCTION

INTRODUCTION

Chronic lymphocytic leukeamia (CLL) accounts for about 25% of all leukeamias, In adults over the age of 50 ys. It is the most common form, particularly in the west. In the Far East Its incidence is low. It is also the most common of the lympho-proliferative disorders accounting for 60% of CLL cases affects twice as many males as females, with a peak incidence between 60 and 80 ys. It is rarely diagnosed below the age of 40 years, even more rare below 30 years. CLL has the highest familial incidence which can be documented in 2% of patients. Pioneering work by [Dame, 1967] and [Galton, 1966], introduced the concept of CLL as a progressive accumulation of lymphocytes, starting in lymph node and or the bone marrow and gradually expanding to most of the haemopoietic organs. This concept of low progression was the basis of the clinical staging system proposed by [Raie et al., 1975].

Advanced involvement will bring about abnormalities in the normal function of the immune system and result in hypogamaglobulinaemia and less frequently autoimmune complications. The symptoms are a consequence of bone marrow Failure i.e anaemia, infection and bleeding. A proportion of patients remains asymptomatic and never need any treatment, dying of unrelated cause, in the remainder, the disease can usually be kept under control for 9 to 10 years, infection being the predominant cause of death [P. Kumar., 1994].

The diagnosis of CLL pre supposes that there is a persistent lymphocytosis of at least 10×10^9 and lymphocytic infiltration in the bone marrow of at least 40%.

Morphologically, the lymphocytes in blood films are small showing scanty cytoplasm and a characteristic pattern of nuclear chromatin clumping, the nucleolus is inconspicuous and zurophil granules are absent. The presence of smear cells, which correlate with the level of WBC is diagnostic value. If the proportion of prolymphocytes is greater than 10% it presents avariant designated CLL/PL. The bone marrow aspirate is useful to confirm morphological features, particularly in patients with low WBC counts, and to assess haemopolesis. The trephine biobsy shows great variability according to the extent of the disease. Early on the pattern of infiltration is interstial or nodular and diffuse pattern in advanced CLL.

Cytogenetic analysis has shown recurring abnormalities of which the most common are trisomy 12 (10-14%), deletion at 11q 23 (20% of cases) and structural abnormalities of long arm of chromosome 13 at band q14 (15-20% of cases). It has been shown that trisomy 12 is often associated with abnormal morphology e.g. (CLL/PL) and that it is a secondary event in pathogenesis [Que et al., 1993]. These features could be translated into a worse prognosis for this abnormality as suggested by a large international study [Juliasson et al., 1990].

Deletions or translocations of chromosome 13q14 are found in approximately 20% of cases and are often the sole abnormality 20% of cases suggesting that the region contains one or more genes of importance in the pathogenesis of B-cell (75% of samples) of which the most common are 13q 12-14 and 13q14-22. The search for a candidate tumour, suppressor gene on 13q14 has been recently restricted to a region containing the band 13q14, [Matutes et al., 1996].

The previous abnormalities can now be detected by FISH in interphase cells, thus not requiring metaphase spreads, many studies have shown a greater sensitivity of FISH, as this method can detect cases without analyzable metaphases and also some of those with a normal karyotype.