

FACULTY OF ENGINEERING

Design and Production Engineering

The Effect of Additives on Structure-Properties Relations of Aluminum Bronze Alloys

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Ahmad Majed Ashraf Abdel Fattah Ibrahim

Bachelor of Science in Mechanical Engineering
(Manufacturing Engineering)
Faculty of Engineering, Ain-Shams University, 2014

Supervised By

Prof. Dr. Nahed El Mahallawy

Design and Production Engineering, Ain Shams University

Prof. Dr. Moustafa Gouda

Mechanical Engineering, The Higher Institute for Engineering Technology

Cairo -(2019)

FACULTY OF ENGINEERING

Design and Production Engineering

The Effect of Additives on Structure-Properties Relations of Aluminum Bronze Alloys

by

Ahmad Majed Ashraf Abdel Fattah Ibrahim

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering) Faculty of Engineering, Ain-Shams University, 2014

Supervising Committee

name	Signature
Prof. Dr. Nahed El Mahallawy	
Prof. Dr. Moustafa Gouda	

Date: June 2019

FACULTY OF ENGINEERING

Design and Production Engineering

The Effect of Additives on Structure-Properties Relations of Aluminum Bronze Alloys

by

Ahmad Majed Ashraf Abdel Fattah Ibrahim

Bachelor of Science in Mechanical Engineering (Manufacturing Engineering) Faculty of Engineering, Ain-Shams University, 2014

Examiners' Committee

Name and Affiliation

Signature

Prof. Dr. Nahed El Mahallawy

Prof. Dr. Ahmad Refaat El Dessouky El Sissy

Prof. Dr. Waleed Mohamed Abdel Aziz Khalifa

Date: 29 July 2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ahmad Majed Ashraf Abdel Fattah Ibrahim

	Signature
• • • • • • • • • • • • • • • • • • • •	

Date: 29 July 2019

Researcher Data

Name : Ahmad Majed Ashraf Ibrahim

Date of birth : 10.06.1992

Place of birth : Heliopolis, Cairo

Last academic degree : B.Sc. in Mechanical Engineering

Field of specialization : Manufacturing Engineering

University issued the degree : Ain Shams University

Date of issued degree : 06.2014

Current job : Teaching Assistant at GUC, Cairo

Acknowledgment

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr. Nahed El Mahallawy for the continuous support of my study and related research for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.Sc. degree. I would like to thank Prof. Dr. Moustafa Gouda for his teachings, guidance, and support. His rich knowledge enlightened me through this research adventure. My sincere thanks to Eng. Osama Lotfy, CEO of Misr for Copper products, who provided me with technical and financial support. I thank Eng. Shahenda Abouelnasr and Eng. Kareem Salama for their assistance and not to forget all the fun we had. My genuine gratefulness for Tech. Fawzy, Tech. Ashraf, and Tech. Mohamed Ibrahim for their continuous cooperation, innovation and efficient implementation of new creative ideas. Last but not least, I would like to thank my family: my parents and to my brother and sister for supporting me spiritually throughout writing this thesis and my life in general.

Abstract

The following research investigates the application of a relatively novel technique for transforming the microstructure and surface properties of a copper alloy. The technique is based on friction and stirring mechanisms that cause heat generation and material mixing. The effect of process parameters, such as; rotation speed, traverse speed, forced convection were investigated in this research. The following treatments were used 800/40, 800/64, 800/93, 1000/93, 1200/93 with and without the application of air cooling of 4.5m³/min. The minimum grain size of 1.9 μ m at 800/93/AIR. The highest β ' phase % was achieved at 800/40/AIR. The highest average hardness value was achieved at 1200/93/AIR. The air cooling prevented post-recrystallization grain growth, increased the β' phase %, and enhanced the hardness values. The NiAl Bronze alloy matrix reinforced with SiC particles was successfully achieved. NAB/(9.7%SiC+0.24%WC) surface composite layer was achieved through the groove filling method. The effect of incorporation of SiC particles on microstructure and hardness of the NAB alloy was investigated in this research. Other dispersion methods were also studied. SiC particles were dispersed to the sample surface using groove, hole, and surface coating methods. The minimum grain size and maximum hardness values were 2.6µm and 288 HV5. These results were achieved by FSP-Groove.

Keywords: Aluminum bronze, NAB, NAB/SiC, MMC, microstructure, Silicon carbide reinforcement, recrystallization, friction stir processing, hardness, thermal analysis, optical analysis.

Table of Contents

Abstract		VI
Acknowled	dgment	VI
Table of C	ontents	VIII
List of Fig	ures	IX
List of Tab	oles	XIII
List of Equ	uations	XIV
List of Abl	breviations	XV
Chapter 1	Introduction	1
Chapter 2	Literature Survey	4
2.1	Nickel Aluminum Bronze Alloys	4
2.2	Friction Stir Processing	13
2.3	Effect of FSP on Structure-Properties Relations	20
2.4	Previous work of FSP on NAB Alloys	49
Chapter 3	Experimental Procedures	52
3.1	Sample Preparation	52
3.2	Friction Stir Processing	53
3.3	Testing	
Chapter 4	Results and Discussion	67
4.1	Investigation of Heat Exposure	68
4.2	Microstructure Investigation	78
4.3	Hardness Measurements	122
Chapter 5	Conclusions and Recommendations	133
5.1	Conclusions	133
5.2	Recommendations for Future Work	136
References	S	137

List of Figures

Fig. 2.1 – Applications of NiAl Bronze Alloy	5
Fig. 2.2 – Vertical section of the Cu-Al-5Ni-5Fe Alloy, (b) Cu-Al binary	
system[12]	6
Fig. 2.3 – Microstructure of as-cast NAB alloy (a) optical micrograph (b)	
schematic view.	7
Fig. 2.4 – Friction stir welding (FSW) [88]	14
Fig. 2.5 – Friction stir processing (FSP) [4].	15
Fig. 2.6 – Examples of previously used patterns that diminishes the pin hol	e
formation, such as: (a) line, (b) spiral, (c) raster pattern. Also (d)	
propeller being treated with FSP using raster pattern [85]	17
Fig. 2.7 – Schematic view of dispersion methods: (a) groove (b) hole filling	g
(c) surface coating[36]	_
Fig. 2.8 – Other dispersion methods: (a) direct friction stir processing (b)	
sandwich method[36].	34
Fig. 2.9 – Montage of micrographs from the nugget zone of a NAB sample	
processed by FSP at 1200 rpm and 50mm/min[19]	
Fig. 2.10 – Micrographs of different regions of NAB alloy after FSP at 120	
rpm and 50 mm/min[19]	
Fig. 2.12 – Micro-hardness profiles across stir zone of NAB sample after	
FSP1200/50 [19]	41
Fig. 2.13 – Cavitation erosion of ship propellers	
Fig. 3.1 – Vertical milling machine used in FSP treatment	
Fig. 3.2 – FSP Tool after manufacturing.	
Fig. 3.3 – FSP tool used in the study.	
Fig. 3.4 – Process conditions.	
Fig. 3.5 – Samples treated with FSP under air blowing effect with rate of	
$4.5 \text{m}^3/\text{min}$.	57
Fig. 3.6 – Designation of samples using (a) groove filling method FSP-	
Groove (b) hole filling method FSP-Hole, and (c) surface coating	g
method FSP-Coat.	_
Fig. 3.7 – Roughed surface for surface coating.	
6 · · · · · · · · · · · · · · · · · ·	

Fig. 3.8 – Images of (a) as-cast NAB sample and SiC particles preplaced	
using three different dispersion methods; (b) groove filling	
method, (c) hole filling method, and (d) surface coating method.	61
Fig. 3.9 – Planes used in analysis of NAB alloy after FSP	63
Fig. 3.10 – Schematic diagram of TCs fixation in FSP samples	64
Fig. 3.11 – Temperature sensing circuit.	65
Fig. 4.1 – Temperature evolution during FSP plotted along the equilibrium	L
phase diagram of the NAB alloy.	
Fig. 4.2 – Temperature distribution corresponding to TCs readings during	
FSP at 1200rpm and 93mm/min (a) FSP-Only and (b) FSP-Air.	71
Fig. 4.3 – Estimated Tpeak °C based on process parameters	
Fig. 4.4 – Estimated Tpeak °C based on $V\beta$	
Fig. 4.5 – C95500 NAB alloy as-cast microstructure using different	75
magnifications.	78
Fig. 4.6 – C95500 NAB alloy shown within (a) high optical magnification	
and (b) SEM micrographs.	
Fig. 4.7 – Sample surface after FSP treatment.	
Fig. 4.8 – Micrograph of NAB cross-section after FSP at 1200rpm and	00
93mm/min.	82
	02
Fig. 4.9 – Montage of samples treated at 93 mm/min and (a) 800rpm, (b) 1000rpm, (c)1200rpm.	92
Fig. 4.10 – Effect of different rotation speeds on the (a) total width, (b) dep	H
of FSP region, and (c) width of SZ of samples treated under	0.4
constant traverse speed of 93 mm/min.	84
Fig. 4.11 – Montages of FSP treatments at 800 rpm and (a)40, (b)64, and	07
(c)93 mm/min	
Fig. 4.12 – Effect of different traverse speeds on the (a) total width, (b) dep	oth
of FSP region, and (c) width of SZ of samples treated under	
constant rotation speed of 800 rpm.	
Fig. 4.13 – Montage of (a) <i>FSP1200/93</i> and (b) <i>FSP1200/93/Air</i>	
Fig. 4.14 – Effect of air blowing on size of FSP region of samples treated a	
1200 rpm and 93 mm/min.	90
Fig. 4.15 – Summary of effect of tool rotation and traverse speeds on the	
volume of the FSP region	
Fig. 4.16 – Microstructure of SZ using different process parameters	93
Fig. 4.17 – The transformation sequence is shown for β during cooling at	
higher rates such as experienced during FSP[9]	94
Fig. 4.18 – SEM images of (a)as-cast, and after FSP at 93mm/min and (b)	
800, (c)1000, (d)1200rpm	95
Fig. 4.19 – Effect of application of FSP under constant traverse speed of	
93mm/min and different rotation speeds on (a) percentage of β	
phase, and (b) grain size within stir zone.	96

Fig. 4.20 – SEM images of (a)as-cast, and after FSP at 800 rpm and (b)40,
(c)64, (d)93mm/min97
Fig. 4.21 – Effect of application of FSP under constant rotation speed of
800rpm and different traverse speeds on (a) percentage of β'
phase, and (b) grain size within stir zone98
Fig. 4.22 – SEM images of (a)as-cast and after FSP under air blowing at 93
mm/min and (b)800, (c) 1000, (d)1200rpm
Fig. 4.23 – Effect of increasing the rotation speed under air cooling speeds
on (a) percentage of β' martensite phase, and (b) grain size within
SZ100
Fig. 4.24 – SEM images after FSP under air cooling at 800 rpm and (b)40,
(c)60, (d)93mm/min
Fig. 4.25 – Effect of increasing the traverse speed under constant air cooling
on (a) percentage of β' martensite, and (b) grain size within stir
zone
Fig. 4.26 – Overview on effect of FSP process parameters on (a) % β' (b)
grain size
Fig. 4.27 – SiCp distribution within FSP region via (a) FSP-Groove, (b) FSP-
Hole, (c) FSP-Coat
Fig. 4.28 – SEM image of FSP-Groove with SiCp distribution
Fig. 4.29 – SEM image of FSP-Groove with higher magnification 108
Fig. 4.30 – EDS point analysis in <i>FSP-Groove</i> on Point 1 illustrated in
Fig. 4.29
Fig. 4.31 – EDS point analysis in <i>FSP-Groove</i> on Point 2 illustrated in
Fig. 4.29
Fig. 4.32 – SEM image of <i>FSP-Groove</i> showing the presence of traces of
WC (white color)
Fig. 4.33 – EDS point analysis in FSP-Groove on Point 3 illustrated in
Fig. 4.32
Fig. 4.34 – SEM image of <i>FSP-Hole</i> showing the agglomeration of SiC
particles
Fig. 4.35 – SEM image within SZ of FSP-Hole
Fig. 4.36 – EDS map analysis for FSP-Hole
Fig. 4.37 – SEM image of FSP-Coat and the WC particles
Fig. 4.38 – EDS point analysis in FSP-Coat on Point 1 illustrated in
Fig. 4.37
Fig. 4.39 – Micrograph montages for NAB samples treated with SiC
particles using different dispersion methods
Fig. 4.40 – Micrographs of SZ of (a) FSP-Groove, (b) FSP-Hole, and (c)
FSP-Coat

Fig. 4.41 – SEM images of SZ of (a) FSP-Only sample without any SiC
dispersion put as a reference, (b) FSP-Groove sample with
noticeable SiC particles distributed everywhere within SZ surface,
(c) FSP-Hole sample with few or no SiC particles noticed in most
regions, and (d) FSP-Coat sample with almost no SiC particles,
however peculiar microstructure noticed with bainitic
microstructure noticed with alteration between α (light phase) and
β' martensite (dark matrix)
Fig. 4.42 – Effect of dispersion method on the percentage of β ' martensite
phase, with FSP-Groove achieving maximum transformation
percentage of martensitic phase
Fig. 4.43 – Effect of dispersion method on the grain size of within SZ 121
Fig. 4.44 – Average hardness at 93 mm/min and different rotation speeds.123
Fig. 4.45 – Average hardness at 800rpm and different transverse speeds 124
Fig. 4.46 – Hardness values at 93mm/min, air cooling, and different rotation
speeds showing (a) hardness distribution under air cooling, (b)
comparison between FSP-Only and FSP-Air
Fig. 4.47 – Hardness values at 800rpm, air cooling, and different transverse
speeds, showing (a) hardness distribution under air cooling, and
(b) comparison between FSP-Only and FSP-Air
Fig. 4.48 – Effect of dispersion method on hardness along FSP path in YY'
direction plotting (a)hardness distribution profile, (b) average,
maximum, and minimum values of different treatments 128
Fig. 4.49 – Effect of dispersion method on hardness across SZ in XX'
direction plotting (a)hardness distribution profile, (b) average,
maximum, and minimum values of different treatments 130
Fig. 4.50 – Effect of dispersion method on hardness in-depth SZ ZZ'
direction plotting (a)hardness distribution profile, (b) average,
maximum, and minimum values of different treatments 132

List of Tables

Table 2.1 – Optimum parameters affecting UTS of AA6061/SiC nano-	
composite[74]	45
Table 2.2 – Previous works of FSP on NAB alloys	49
Table 2.3 – Previous studies on surface NAB matrix composite layers	51
Table 3.1 – Chemical Composition of UNSC95500 Samples	52
Table 3.2 – Samples treated using FSP only	56
Table 3.3 – Samples treated with FSP under the effect of air blowing	57
Table 3.4 – Samples treated with SiC using different dispersion methods	60
Table 3.5 – Sample preparation for microstructural analysis	62
Table 3.6 – Plan of work	66
Table 4.1 – Thermocouple Data	77

List of Equations

Eq. 2.1	
Eq. 2.2	
Eq. 2.3	
Eq. 2.4	
Eq. 2.5	
Eq. 4.1	
Eq. 4.2	

List of Abbreviations

AB : Aluminum Bronze

BM : Base Metal

CTE : Coefficient of Thermal Expansion

DRX : Dynamic Recrystallization

FSA : Friction Stir Alloying

FSP : Friction Stir Processing

FSW : Friction Stir Welding

IMC : Intermetallic Compounds

MMC : Metal Matrix Composite

NAB : Nickel Aluminum Bronze

PSN : Particle-Stimulated Nucleation

SPD : Severe Plastic Deformation

SZ : Stir Zone

SMMC : Surface Metal Matrix Composite

SCMC : Surface Copper Matrix Composite

UTS : Ultimate Tensile Strength