

Ain Shams University Faculty of Engineering Design and Production Engineering

Developing and Characterization of Al-Ceramic Particulate Reinforced and Hybrid MMCs

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Rana Hassan Ahmed Elsaid Amra

Master of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Dr. Mohamed Ahmed Taha
Prof. Dr. Ahmed Mohamed Mounib
Dr. Wael Fathy Hoziefa

Cairo -(2019)

Ain Shams University Faculty of Engineering Design and Production Department

Developing and Characterization of Al-Ceramic Particulate Reinforced and Hybrid MMCs

by

Rana Hassan Ahmed Elsaid Amra

Bachelor of Science in Mechanical Engineering
Faculty of Engineering, Ain Shams University, 2014
Supervising Committee

Name	Signature
Prof. Dr. Mohamed Ahmed Taha	
Prof. Dr. Ahmed Mohamed Mounib	
Dr. Wael fathy Hoziefa	

Date: June 2019

Ain Shams University Faculty of Engineering Design and Production Department

Developing and Characterization of Al-Ceramic Particulate Reinforced and Hybrid MMCs

by

Rana Hassan Ahmed Elsaid Amra

Bachelor of Science in Materials Engineering
Faculty of Engineering, Ain Shams University, 2014
Examiners' Committee

Prof. Iman Salah El-Mahallawi	
Prof. Tarek Ahmed Khalifa	
Prof. Mohamed Ahmed Taha	
Prof. Ahmed Mohamed Mounib	

Date: June 2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature

Rana Hassan Ahmed Elsaid Amra Date: June 2019

Researcher Data

Name : Rana Hassan Ahmed Elsaid Amra

Date of birth : 17.07.1991

Place of birth : Cairo

Last academic degree : B.Sc. in Mechanical Engineering

Field of specialization : Design and Production Engineering

University issued the degree : Ain Shams University

Date of issued degree : 07.2014

Current job : Teaching Assistant

Acknowledgement

I would like to express my gratitude to my academic advisors, Prof. Dr. Mohamed Taha, Prof. Dr. Ahmed Mounib and Dr. Wael Hoziefa for their guidance and motivation during this study. I am extremely thankful to Prof. Heinz Palkowski and the Metal Forming and Processing, Institute of Metallurgy – Clausthal University of Technology Clausthal-Zellerfeld at Germany for providing their help and their co-operation in the characterization tests discussed in my study.

I also want to appreciate the efforts my Colleagues in design and production engineering department, faculty of engineering, Ain Shams University, Cairo, Egypt. Lastly, I sincerely thank my family, especially my parents for her understanding and patience.

Abstract

Within the recent period of time, the world witnesses a technological and technical evolution. And -as always- this evolution requires an evolutionary update in usable materials in various industries to keep in pace with means of technical advancement.

Therefore, the traditional materials became non-sufficient to its purpose. Ergo, it became a necessity to create composite materials of two or more origins that have unique characteristics. Therefore, the main purpose of this thesis is to manufacture and develop composite materials of aluminum alloy 6063 (monolithic alloy) along with some enhancing materials such as; Silicon carbide, alumina, cement dust, and silica fumes.

This research is divided into two major parts:

First part:

The study of using (Silicon carbide, alumina, cement dust, and silica fumes) as enhancement materials to the aluminum alloy 6063.

By adding them during casting with various percentage of these materials in relation to the monolith alloy's weight (2.5, 5, 10 &15) during traditional casting whilst trying to cure the alloy before adding the materials so that, the alloy and the enhancing materials could dissolve and merge together.

By studying the result of the previously mentioned process under optical microscope; voids, cracks and unmerging of the fine materials with the alloy could be observed, which led to irregular distribution that affected the mechanical characteristics of the composite material.

To reduce and avoid the previously mentioned problematic results, accumulated hot rolling at 530 °C was applied to the composite material and by studying the results; regular distribution of fine materials in the alloy was observed therefore, proved a remarkable enhancement to the mechanical characteristics of the alloy, where the tensile strength had been enhanced by (168%) than the monolithic alloy at AA6063-15% silicon carbide composite sample and the hardness had been enhanced with (128%) than that of the monolithic alloy at AA6063-10% alumina composite sample.

Second part:

Adding a hybrid of enhancing materials to the monolith alloy provided taking a constant percentage of Silicon carbide (5%) and mixing in various percentages of; alumina, cement dust, and silica fumes.

The new hybrid consisting of; (5% silicon carbide + various percentages of alumina), (5% silicon carbide + various percentages of cement dust), and (5% silicon carbide + various percentages of silica fumes) were added to the monolith alloy.

And by studying the result under optical microscope and its mechanical characteristics; and improvement to its distribution towards regularity was observed which consequently led to an improvement to its mechanical characteristics but the problem with voids still remained as an issue

And like the first part, hot rolling was applied to the composite alloy to reduce and diminish casting problems, and after studying the results in the same way a remarkable improvement in the mechanical properties, where the tensile strength enhanced with 232% at AA6063/5%SiC-10% Silica fumes hybrid composite sample and the hardness enhanced with 144% at AA6063/10% Alumina hybrid composite sample.

To summarize; using and adding the enhancing materials separately to the aluminum alloy 6063 led to an improvement to some of its characteristics, which got even better after applying hot rolling to the composite alloy, and got a greater result when using a hybrid of enhancing materials and applying hot rolling to the result.

This study is considered one of the few around the world based on recycling materials such as; cement dust, and silica fumes in enhancing alloys and it's an example of cost reduction and benefiting from recycled materials as well as raising its value.

<u>Keywords</u>: Composites, Aluminum Metal Matrix Composite, Hybrid Aluminum Metal Matrix Composite, Stir Casting.

Table of Contents

Acknowledgement	i
Abstract	ii
Table of Contents	iv
List of Figures	vii
List of Tables	X
1. Introduction	11
1.1. Motivation	11
1.2. Background	11
1.3. Aim of work	12
2. Literature Review	13
2.1. Aluminum Alloys	13
2.2. Composite Materials	14
2.2.1. Composite Structure	14
2.2.2. Classification of Composites	15
2.3. Processing (Manufacturing Routes) of MMCs	16
2.3.1. Solid State Manufacturing Method	16
2.3.2. Semi-Solid State Manufacturing Method	16
2.3.2. Liquid State Manufacturing Method	17
.2.4 MMCs Fabricated by Stir casting technique	
2.4.1. Stir casting processing parameters	18
2.4.2. Considerable Aspects in MMCs Fabrication	20
2.5. Accumulative hot rolling technique	24
2.6. Problem Definition	26
3. Experimental work	27
3.1. Materials	27
3.1.1. Matrix Alloy	27
3.1.2. Reinforcement	27
3.1.2.1. Silicon Carbide (SiCp)	
3.1.2.2. Alumina (Al ₂ O ₃)	28
3.1.2.3. Silica Fumes	
3.1.2.4. Cement Dust	
3.2. Experimental Setup and Procedure	
3.2.1. Casting technique:	
3.2.1.1. Casting process components	
3.2.1.2. Reinforcement treatments:	31

3.2.1.3. Casting procedures:	33
3.2.2. Accumulative rolling technique	34
3.3. Material characterization	35
3.3.1. Microstructure	36
3.3.1.1. Sample preparation	36
3.3.1.2. Optical Microscope and Scanning (EDX and SEM)	36
3.3.2. Mechanical properties	37
3.3.2.1. Tension test	37
3.3.2.2. Hardness	38
3.3.2.3. Density Measurement	39
4. Results	40
4.I. AA6063 Matrix alloy	40
4.I.1. Microstructural Evolution.	40
4.I.2. Mechanical properties	41
4.II. AA6063/SiC composite	42
4.II.1. Microstructural Evolution	42
4.II.1.1. Cast AA6063/SiC composite	42
4.II.1.2. Rolled AA6063/SiC composite	44
4.II.2. Mechanical properties	47
4.II.2.1. Tensile Testing	47
4.II.2.2. Density	49
4.II.2.3. Hardness	50
4.III. AA6063/Al ₂ O ₃ composite	52
4.III.1. Microstructural Evolution	52
4.III.1.1. Cast AA6063/ Al ₂ O ₃ composite	52
4.III.1.2. Rolled AA6063/Al ₂ O ₃ composite	54
4.III.2. Mechanical properties	55
4.III.2.1 Tensile testing	55
4.III.2.2. Density	57
4.III.2.3. Hardness	58
4.IV. AA6063/Cement dust composite	60
4.IV.1. Microstructure Evolution	
4.IV.1.1 Cast AA6063/Cement dust composite	60
4.IV.1.2 Rolled AA6063/Cement dust	
4.IV.2. Mechanical properties	
4.IV.2.1. Tensile Testing	
4.IV.2.2. Density	65

4.IV.2.3. Hardness	66
4.V. AA6063/Silica fumes composite	68
4.V.1. Microstructural analysis	68
4.V.1.1. Cast AA6063/Silica fumes composite	68
4.V.1.2. Rolled AA6063/Silica fumes	69
4.V.2. Mechanical Properties	70
4.V.2.1. Tensile Testing	70
4.V.2.2. Density	72
4.V.2.3. Hardness	73
4.VI. AA6063 hybrid reinforcement composite	75
4.VI.1. AA6063 Cast hybrid composite	75
4.VI.1.1. Microstructural Evolution of cast hybrid composite	76
4.VI.1.2. Mechanical properties of cast hybrid composite	83
4.VI.1.2.1. Tensile Testing	83
4.VI.1.2.2. Density	85
4.VI.1.2.3. Hardness	86
4.VI.2. AA6063 Rolled hybrid composite	88
4.VI.2.1. Microstructure of rolled hybrid composite	88
4.VI.2.2. Mechanical properties of Rolled hybrid composites	93
4.VI.2.2.1. Tensile Testing	93
4.VI.2.2.3. Density	97
4.VI.2.2.3. Hardness	98
5. Conclusion	102
References	105

List of Figures

Figure 2.1: AA6063 Microstructure	14
Figure 2.2: Composite Material structure	
Figure 2.3: Classification of composites according to Matrices and reinforcements types	
Figure 2.4: Schematic diagram of Stir casting technique for MMCs fabrication [40]	
Figure 2.5: a- Micrograph of sample obtained without Stirring	
Figure 2.6: Schematic diagram of the contact angle	
Figure 2.7: (a-b) Porosity in Al–SiC composite after stir casting with different	
magnifications	23
Figure 2.8: Al 6061-20% SiCp: a- As cast, b- Rolled with 92% reduction, c- Rolled with	
96% reduction.	
Figure 3.1: SEM micrographs of SiC	
Figure 3.2: SEM micrographs of Al ₂ O ₃ (50 μm)	
Figure 3.3: EDX analysis of Al ₂ O ₃ (50 µm)	
Figure 3.4: SEM micrographs of Silica fumes	
Figure 3.5: SEM micrographs and EDX of Cement dust	
Figure 3.6: SEM micrographs of Cement dust	
Figure 3.7: Casting unit used to produce MMNCs; (a) casting furnace, (b) stirring motor, (
furnace cover, (d) crucible, (e) axial-flow impeller with 3 blades, (f) stainless-steel casting	
mold (g) pouring and (h) fabricated cast, located at Mining & Pet. Dep., Al-Azhar Univers Egypt	31
	31
Figure 3.8: Heat treatment furnace located at Mining & Pet. Dep., Al-Azhar University,	22
Egypt	
Figure 3.9: AA6063 composites fabricated by stir casting	
Figure 3.10: MMCs composites fabricated by stir casting	
Figure 3.11: MMCs composites undergo the accumulative rolling process	
Figure 3.12: Accumulative hot rolling AA6063 composites samples	35
Figure 3.13: (a) M+W-Dortmund, (b) heat treatment furnace at Metal Forming and	~ ~
Processing, Institute of Metallurgy-Clausthal University of Technology	35
Figure 3.14: Samples prepartion (a) Grinding and polishing M/C, (b) Ultrasonic polisher	
machine M/C, (c) As-Cast reinforced samples, (d) As-Rolled reinforced samples Samples	_
prepared at Metal Forming and Processing, Institute of Metallurgy-Clausthal University of	
	36
Figure 3.15: Tension sample dimensions (mm) according to ASTM E8 (a) cast sample, (b)	
rolled sample	
Figure 3.16: Universal testing machine located at Metal Forming and Processing, Institute	
Metallurgy-Clausthal University of Technology	38
Figure 3.17: Hardness tester located at Metal Forming and Processing, Institute of	
Metallurgy-Clausthal University of Technology	38
Figure 4.1: Optical micrograph of as-cast AA6063 alloy	40
Figure 4.2: Optical micrograph of rolled AA6063 alloy	
Figure 4.3: Optical micrographs of AA6063 reinforced with SiC particles 2.5 wt.% (a), 5%	%
wt.%(b), 10% wt.% (c) and 15 wt.% (d)	
Figure 4.4: SEM micrographs of AA6063/5% SiCP particles (a, b) accompanied with ED2	X
analysis (c)	44
Figure 4.5: Optical micrographs of rolled AA6063 reinforced with 5 wt.% SiC (a, b, c) &	15
wt.% SiC (d,e, f)	45

Figure 4.6: SEM micrographs of rolled AA6063 reinforced with 5 wt.% SiC (a, b, c) & 1.	5
wt.% SiC (d,e, f) accompanied with EDX analysis	46
Figure 4.7: UTS of cast and rolled AA6063/SiC Composite	48
Figure 4.8: Elongation of cast and rolled AA6063/SiC Composites	48
Figure 4.9: UTS of cast and rolled AA6063/SiC Composites	49
Figure 4.10: Elongation of cast and rolled AA6063/SiC Composites	
Figure 4.11: Density of cast and rolled AA6063/SiC Composites	
Figure 4.12: Density of cast and rolled AA6063/SiC Composites	50
Figure 4.13: Hardness values (HV) of cast and rolled AA6063/SiC composites	51
Figure 4.14: Hardness values (HV) of cast and rolled AA6063/SiC composites	
Figure 4.15: Optical micrographs of AA6063 reinforced with (Al ₂ O ₃) Particles: 2.5 (a), 5	
10(c) and 15(d) wt.%	
Figure 4.16: SEM micrographs and EDX analysis of AA6063 reinforced with 10% SiC	
particles (a, b)	53
Figure 4.17: Optical micrographs of AA6063/Al ₂ O ₃ 2.5 (a), 5 (b) and 10 wt.% composite	s 54
Figure 4.18: UTS of cast and rolled AA6063/Al ₂ O ₃ Composite	
Figure 4.19: Elongation of cast and rolled AA6063/Al ₂ O ₃ Composites	
Figure 4.20: UTS of cast and rolled AA6063/Al ₂ O ₃ Composite	
Figure 4.21: Elongation of cast and rolled AA6063/Al ₂ O ₃ Composite	
Figure 4.22: Density of cast and rolled AA6063/Al ₂ O ₃ Composite	
Figure 4.23: Density of cast and rolled AA6063/Al ₂ O ₃ Composite	
Figure 4.24: Hardness values (HV) of cast and rolled AA6063/Al ₂ O ₃ Composites	
Figure 4.25: Hardness values (HV) of cast and rolled AA6063/Al ₂ O ₃ Composites	
Figure 4.26: Optical micrographs of AA6063 matrix (a), reinforced with 2.5 (b), 5(c), 100	
Cement dust particles wt.%	
Figure 4.27: SEM of AA6063 reinforced with 2.5% Cement dust particles (a, b and c)	61
Figure 4.28: Optical micrographs of rolled AA6063 reinforced with 2.5% Cement dust	
composite	62
Figure 4.29: UTS of cast and rolled AA6063/Cement Dust Composite	63
Figure 4.30: Elongation of cast and rolled AA6063/Cement Dust Composites	64
Figure 4.31: UTS of cast and rolled AA6063/Cement Dust Composites	64
Figure 4.32: Elongation of cast and rolled AA6063/Cement Dust Composites	65
Figure 4.33: Density of cast and rolled AA6063/Cement Dust Composite	65
Figure 4.34: Density of cast and rolled AA6063/Cement Dust Composite	66
Figure 4.35: Hardness values (HV) of cast and rolled AA6063/Cement Dust Composite	67
Figure 4.36: Hardness values (HV) of cast and rolled AA6063/Cement Dust Composite	67
Figure 4.37: Optical micrographs of AA6063 matrix (a) reinforced with Silica fumes	
particles 2.5 wt% (b)	68
Figure 4.38: SEM micrographs of AA6063 reinforced with 5% SiCP particles (a, b)	
- 1901 to the over 2211 miles of the 10000 femines of the 10000 femines (w, c)	60
accompanied with EDX analysis (c)	
accompanied with EDX analysis (c)	(b) 70
accompanied with EDX analysis (c)	(b) 70 71
accompanied with EDX analysis (c)	(b) 70 71
accompanied with EDX analysis (c)	(b) 70 71 71
accompanied with EDX analysis (c)	(b) 70 71 72 72
accompanied with EDX analysis (c)	(b) 70 71 72 72
accompanied with EDX analysis (c)	(b) 70 71 72 72 73
accompanied with EDX analysis (c)	(b) 70 71 72 72 73 73

Figure 4.48: Micrographs of AA6063/5% SiC in as cast (a, b) and rolled (c, d) accompanies with EDX analysis	ied 75
Figure 4.49: Optical micrographs of AA6063 matrix alloy (a), reinforced with 5% SiC	13
particles and 2.5% (b), 5% (c), 10% (d) Alumina	. 77
Figure 4.50: SEM of hybrid AA6063 reinforced with 2.5% Alumina 5% SiCP particles	•• , ,
accompanied with EDX analysis (a, b)	77
Figure 4.51: SEM of hybrid AA6063 reinforced with 2.5% Alumina 5% SiCP particles	•• , ,
accompanied with EDX analysis (a, b)	78
Figure 4.52: Optical micrographs of AA6063 matrix alloy (a), reinforced with 5% SiC	
particles and 2.5 (b), 5 (c), 10 (d) wt.% Cement Dust	79
Figure 4.53: SEM of hybrid AA6063 reinforced with 2.5% Cement dust 5% SiCP particle	es
accompanied with EDX analysis (a, b & c)	80
Figure 4.54: Optical micrographs of AA6063 matrix alloy (a), reinforced with 5% SiC	
	82
Figure 4.55: SEM of hybrid AA6063 reinforced with 5% Silica fumes 5% SiCP particles	
accompanied with EDX analysis (a, b)	82
Figure 4.56: Ultimate Tensile Strength (UTS) values of cast AA6063-SiCP hybrid	
composites	
Figure 4.57: Elongation % values of cast AA6063-SiCP hybrid composites	85
Figure 4.58: Density values of cast AA6063-SiCP hybrid composites	86
Figure 4.59: Hardness (HV) values of cast AA6063-SiCP hybrid composites	88
Figure 4.60: Optical micrographs of AA6063/5% SiC (a) and rolled hybrid composites	
[(AA6063/5% SiC- Alumina), (b,c &d)]	89
Figure 4.61: EDX and SEM of rolled AA6063 reinforced with 5% SiCP and 15% Al2O3	
particles (a, b,c and d)	90
Figure 4.62: Optical micrographs of AA6063/5% SiC (a) and rolled hybrid composites	
[(AA6063/5% SiC- Cement dust), (b,c &d)]	
Figure 4.63: EDX and SEM of rolled AA6063 reinforced with 5% SiCP and 2.5% cemen	t
dust particles (a, b, c)	92
Figure 4.64: Optical micrographs of AA6063/5% SiC (a) and rolled hybrid composites	
[(AA6063/5% SiC- Silica fumes), (b,c &d)]	93
Figure 4.65: Ultimate Tensile Strength (UTS) values of rolled AA6063-SiCP hybrid	
composites	
Figure 4.66: Elongation % values of cast AA6063-SiCP hybrid composites	
Figure 4.67: Tensile values of cast and rolled AA6063-SiCP hybrid composites	96
Figure 4.68: Elongation % of cast and rolled AA6063-SiCP/Al2O3P hybrid composites	
Figure 4.69: Density values of rolled AA6063-SiCP hybrid composites	
Figure 4.70: Density values of rolled AA6063-SiCP hybrid composites	
Figure 4.71: Hardness values of rolled AA6063-SiCP hybrid composites	
Figure 4.72: Hardness values of rolled AA6063-SiCP hybrid composites	100

List of Tables

Table 2-1: Main alloying elements in the wrought aluminum alloy designation system	and
Aluminum casting alloys	13
Table 2-2: Mechanical properties of AA6063 alloy	14
Table 2-3: Contact angles between liquid Aluminum and SiC, Al ₂ O ₃ , B ₄ C	21
Table 3-1: Chemical analysis in wt. % of alloy AA6063 used	
Table 3-2: Chemical analysis in wt. % of SiC used	27
Table 3-3: Characteristics of the reinforcing Al2O3 nanoparticles	
Table 3-4: Chemical analysis in wt. % of alloy Silica Fumes	
Table 3-5: Reduction table	
Table 4-1: Mechanical properties of AA6063	