LOADING OF PRAZIQUANTEL IN NANOCARRIER AS A NEW THERAPEUTIC APPROACH TOWARDS SCHISTOSOMIASIS MANSONI: AN EXPERIMENTAL STUDY

Thesis submitted to Faculty of Medicine, Ain Shams University for Partial Fulfillment of M.D. Degree in Basic Medical Sciences (Parasitology)

By

Marmar Ahmed Hanafy Mostafa

M.B., B.Ch., M. Sc. Assistant lecturer of Parasitology Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr./ Gihan Mostafa Tawfeek

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr./ Mohammad Hassan Abdel Baki

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr./ Ayman Nabil Ibrahim

Assistant Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr./ Mohamed Mahmoud Fathy

Lecturer at Biophysics Department Faculty of Science, Cairo University

Dr./ Marwa Salah El Din Mohamed Diab

Researcher at Molecular Drug Evaluation Department National Organization for Drug Control and Research (NODCAR)

I wish to express my deep gratitude to **Prof. Dr. Gihan Mostafa** Tawfeek and **Prof. Dr. Mohamed Hassan Abelbaky**, Professors of Medical Parasitology, Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for their faithful supervision, precious advice and meticulous revision of every part of this work.

I am much obliged to **Dr. Ayman Nabil Ibrahim**, Assistant Professor of Medical Parasitology, Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for his kind guidance.

I would like to express my deep appreciation to **Dr. Mohamed**Mahmoud Fathy, lecturer of Biophysics, Faculty of Science, Cairo
University, and **Dr. Marwa Salah El Din Mohamed Diab** for their sincere
help, continuous guidance and facilities they provided to perform the study.

I feel much indebted to **Prof. Dr. Lobna Shash,** Professor of Pathology, Pathology Department, Faculty of Medicine, Ain Shams University, for her kind help and sincere guidance.

I would like to thank **Prof. Dr. Manal Abdel Aziz Mostafa**, Head of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for her great support.

Last but not least, many thanks to my dear husband **Dr. Mostafa**Mahmoud and my lovely daughters Hana and Habiba for continuous

encouragement and granting me the time to complete my work.

Marmar Ahmed Hanafy

List of Contents

Subject	Page
Introduction	1
Chapter-1: Review of Literature	5 -71
1.1. Schistosoma mansoni	
1.1.1. Historical overview	5
1.1.2. Taxonomy and Classification	6
1.1.3. Morphology of S. mansoni	7
1.1.4. Life cycle	9
1.1.5. Epidemiology	12
1.1.6. Pathogenesis	15
1.1.7. Immune response	24
1.1.8. Clinical presentation	25
1.1.9. Diagnosis	28
1.1.10. Treatment	29
1.1.11. Prevention and Control	31
1.2. Praziquantel	
1.2.1. Chemical structure	34
1.2.2. Mechanism of action	35
1.2.3. Pharmacokinetics	36
1.2.4. Dosage	37
1.2.5. Side effects	37
1.2.6. Drawbacks	38
1.3. Nanoparticles and Nanomedicine	
1.3.1. Nomenclature	41

1.3.2. Historical overview41
1.3.3. Importance of being nano42
1.3.4. Classification44
1.3.5. Characterization of nanoparticles51
1.3.6. Medical applications of nanotechnology55
Chapter-2: Aim of the Work72
Chapter-3: Materials and Methods73 - 119
3.1. Preparation of PZQ-loaded chitosan and73 mesoporous silica NPs
3.2. Experimental study of the therapeutic85 efficacy of PZQ-NPs for treatment of murine schistosomiasis mansoni
3.3. Statistical analysis of the results119
Chapter-4:Results
4.1. Physicochemical characteristics of the
prepared MSNPs and CsNPs
4.1.1. Encapsulation efficiency (EE)121
4.1.2. Shape and mean diameter by
transmission electron microscopy
(TEM)124
4.1.3. Particle size thorough dynamic light
scattering (DLS)125
4.1.4. Zeta potential (ZP) analysis
4.2. Experimental study results
4.1.1. Parasitological parameters
4.1.2. Histopathological parameters

4.1.3. Biochemical parameters	150
4.1.4. Immunological parameters	157
4.1.5. Genotoxicity assessment.	161
Chapter-5: Discussion	65-192
Conclusion	193
Future Work	195
Summary	197
References	201
Arabic Summary	

LOADING OF PRAZIQUANTEL IN NANOCARRIER AS A NEW THERAPEUTIC APPROACH TOWARDS SCHISTOSOMIASIS MANSONI: AN EXPERIMENTAL STUDY

By

Marmar Ahmed Hanafy

Parasitology department
Faculty of Medicine, Ain Shams University

Objective:

The use of nanoparticles (NPs) as a drug carrier can improve todays' therapies. The main objective of this work focuses on the preparation of chitosan and mesoporous silica nanoparticles loaded with praziquantel (PZQ-Cs and PZQ-Si, respectively) in order to enhance the therapeutic efficacy and overcome the drawbacks of conventional praziquantel (PZQ) therapy.

Methodology:

After preparation of PZQ-Cs and PZQ-Si, detailed physicochemical characterization was carried out. Mice were experimentally infected with *S. mansoni* and treated 6 weeks post-infection with PZQ in different doses either via oral or intraperitoneal (IP) routes. PZQ in the same doses orally administered to *S.mansoni* infected mice was used as a drug control and infected and non-infected non-treated mice served as positive and negative controls, respectively.

Results:

PZQ-Si exhibited the best physicochemical attributes in terms of small uniform size (105 nm), spherical shape

and PZQ entrapment efficiency (83%). A maximum using effect achieved antischistosomal was administered PZQ-Si as reflected by total worm burden, tissue egg count, oogram pattern and hepatic granuloma count and diameter. The biomarkers related to liver oxidative stress status and immunomodulatory effect (serum TNF-α and IL-10) were significantly improved. Data obtained implied that IP route was less efficacious for the delivery of PZQ-Si. Encapsulation of PZQ permits the reduction of the used therapeutic dose of PZQ. Only improvement of infection induced inflammatory and hepatic oxidative stress reactions were achieved with PZQ-Cs. Hepatic DNA fragmentation, measured by comet assay, was significantly improved in infected mice treated with a maximum dose of PZQ loaded in prepared nanoparticles as compared to positive or PZQ control groups.

Conclusion:

The results indicate that mesoporous silica NPs are promising safe nanocarriers for PZQ potentiating its antischistosomal effect, with antioxidant, immunomodulatory and anti-inflammatory action in animal model infected with *S. mansoni*. From a practical standpoint, PZQ-Si using a lower dose of PZQ could be suggested for effective PZQ antischistosomal mass chemotherapy.

Keywords: Chitosan nanoparticles, Mesoporous silica nanoparticles, *Schistosoma mansoni*, liver, histopathology, oxidative stress, genotoxicity.

List of Abbreviations

Abbreviation	Full name		
A blank	:	Absorbance of blank	
A sample	:	Absorbance of the sample	
A standard	:	Absorbance of the standard	
AgNPs	:	Silver NPs	
ANOVA	:	Analysis of variance	
A.U.	:	Arbitary unit	
CCA	:	Circulating anodic antigen	
CD4	:	Cluster of differentiation	
C _{free}	:	Free drug concentration	
C_{i}	:	Initial concentration	
CsNPs	:	Chitosan nanoparticles	
Cs-TPP	:	Chitosan- sodium tri-poly-phosphate	
DLS	:	Dynamic Light Scattering	
DMSO	:	Dimethyl sulfoxide	
DNA	:	Deoxy ribonucleic acid	
DTNB	:	5, 5 di-thio bis- 2-nitrobenzoic acid	
EDTA	:	Disodium ethylene-diamine-tetra-acetic	
		acid	
EE	:	Encapsulation efficiency	
ELISA	:	Enzyme linked immunosorbent assay	
EPR	:	Enhanced permeability and retention	
FDA	:	Food and Drug Administration	
gm	:	Gram	

GTPase : Guanosine triphosphatase

GSH : Reduced glutathione

HBV : Hepatitis B virus

HCV : Hepatitis C virus

HRP : Horseradish Peroxidase

Hx and E: Hematoxylin and Eosin

IFN- γ : Interferon-gamma

IgE : Immunoglobulin E

IgM: Immunoglobulin M

IgG : Immunoglobulin G

IHA : Indirect haemagglutination

IL- : Interleukin

ILARC : International Labor Rights Case Law

IP : Intraperitoneal

Kg : Kilogram

LSD : Least significant difference

M : Mole

MDA : Malondialdehyde

MSNPs : Mesoporous silica nanoparticles

min : Minute

mg : Milligram

ml : Milliliter

mV : Millivolt

mM : Millimole

MSP₁₀ : Merozoite surface protein 10

NaCl : Sodium Chloride

NaOH : Sodium Hydroxide

NEDA : 1-naphthyl Ethylene-diamine

nm : Nanometer

nmol : Nanomole

NO : Nitric oxide

NODCAR : National Organization for Drug Control

and Research

NPs : Nanoparticles

NSCP : National Schistosomiasis Control Program

PBS : Phosphate buffered saline

PCR : Polymerase chain reaction

PEG: Polyethylene glycol

pg : Picogram

PLGA : Poly d, l-lactic-coglycolic acid

PMMA : Poly-methyl-methacrylate

P-value : Probability

PZQ : Praziquantel

PZQ-Cs : Praziquantel-loaded chitosan

nanoparticles

PZQ-NPs : Praziquantel-loaded nanoparticles

PZQ-Si : Praziquantel-loaded mesoporous silica

nanoparticles

RBCs : Red blood cells

RNS : Reactive nitrogen species

ROS : Reactive oxygen species

rpm : Round per minute

S. : Schistosoma

SCGE : Single cell gel electrophoresis

SD : Standard deviation

SEA : Soluble egg antigen

SH : Thiol group

SLN : Solid Lipid Nanoparticles

spp. : Species

SWA : Soluble worm antigen

SWAP : Soluble worm antigenic preparation

TBRI: Theodor Bilharz Research Institute

TEM : Transmission electron microscopy

Th1 : T-helper lymphocyte type 1

Th2 : T-helper lymphocyte type 2

US EPA : United States Environmental Protection

Agency

V: V : Volume: volume

WBCs : White blood cells

WHO : World Health Organization

ZP : Zeta Potential

18s rRNA : 18s ribosomal ribonucleic acid

μm : Micrometer

μmol : Micromole

List of Tables

No.	Table	Page
1	Study design	87
2	Mixing of the reagents of NO assay kit for the preparation of sample, sample blank, standard and standard blank tubes.	104
3	Absorbance of the serial dilutions and concentrations prepared from the initial PZQ concentration.	123
4	Physicochemical characteristics of blank and PZQ loaded CsNPs and MSNPs.	126
5	Worm burden in <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	127
6	Intestinal and hepatic tissue egg load in <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	130
7	Oogram pattern in <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	134

V

No.	Table	Page
8	Histopathological study of the liver sections of <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	147
9	Oxidative stress markers; reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in liver tissue homogenate in <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	151
10	Serum levels of interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in <i>Schistosoma mansoni</i> infected mice treated with different doses of PZQ encapsulated in CsNPs and MSNPs 6 weeks post infection (group B) compared with their corresponding controls (group A).	157
11	Assessment of DNA damage in liver tissue of both non-infected mice treated with blank MSNPs and CsNPs and infected mice treated with full dose of PZQ either free or encapsulated in CsNPs and MSNPs 2 weeks post treatment, compared with positive and negative control groups.	161

vi