

Phytochemical and Biological Studies on *Pulicaria incisa* subspecies candolleana Family Asteraceae

A Thesis Submitted By

Esraa Adel Shahat Hassanein

Teaching Assistant at Pharmacognosy Department
Bachelor of Pharmaceutical Sciences,
Faculty of Pharmacy, October University for Modern Sciences and Arts
University, 2011

In Partial Fulfilment of the Requirements
For the Degree of Master in Pharmaceutical Sciences
(Pharmacognosy)

Under the Supervision of

Omayma A. Eldahshan, Ph.D.

Professor of Pharmacognosy
Acting Head of Pharmacognosy Department
Faculty of Pharmacy
Ain Shams University

Riham O. Bakr, Ph.D.

Associate Professor of Pharmacognosy
Faculty of Pharmacy
MSA University

Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Abbassia, Cairo, Egypt 2019

Acknowledgments

At first, I owe lots of deep gratitude and thanks to ALLAH, without his blessings, this work wouldn't be accomplished.

Sincere gratitude and profound appreciation to the people who helped me a lot to finish this work;

At first, my supervisors **Prof. Omayma A. Eldahshan**, Professor and head of Pharmacognosy department, faculty of Pharmacy, Ain Shams University. Thanks for her supervision, guidance, patience to educate me, valuable scientific advice, variable knowledge and her unlimited insistence for perfection. Thanks for her great efforts throughout the whole work and finally revising the thesis.

Assoc. Prof. Ríham O. Bakr, Associate professor in the Pharmacognosy department, faculty of Pharmacy, Modern Sciences and Arts University, for her patience, intellectual, academic support, kind assistance whenever possible and all of her extensive efforts during the whole work and in revising the thesis.

I have a great chance to work with a person like **Assistant Prof. Ahmed M. Essam**, Assistant professor of Pharmacognosy, faculty of Pharmacy,
Ain Shams University. Many thanks to him for sharing his beneficial practical experience and knowledge with us.

Thanks to **Prof. Nahla A. Ayoub**, for her guidance, and support.

I am also very thankful to my spiritual mother Assoc. Prof. Dr. Soumaya Saad Zaghloul, Associate professor in the Pharmacognosy department, faculty of Pharmacy, Modern Sciences and Arts

University, for her sincere advices and valuable support through the whole work.

Also many thanks to **Prof. Dr. Shahira Ezzat,** Head of department of pharmacognosy in Faculty of Pharmacy, MSA University for her encouragement and support.

My colleagues in the department of Pharmacognosy from MSA university;, Dr. Mohamed Abdel Aal and A.L. Ibrahim Ezz, Salma Khaled, Mai Gohar and Omnia, Dr. Eman Shereen for their help, cooperation and their advice during the whole work. And also my colleagues from Ain Shams University, Heba El Nashar and Nouran Fahmy for always being helpful and supporters.

My colleague **A.L. Ramy Ramsís,** department of pharmaceutical chemistry, MSA University.

I am deeply thankful to my dear **parents** -whom I really love and respect- for their care, unconditional love and encouragement. My brother **Mohamed** and sister **Fatma** for their support and my parents in law for their continuous encouragement.

Finally, much of love, appreciation and many thanks to my Husband **Dr. Ahmed Fayez,** Lecturer of Pharmacology, Faculty of Pharmacy, Modern Sciences and Arts University for helping me in the biological assessments and for always motivating me. My little angel **Malak,** her beautiful smile helped me to pass the hard times.

Esraa Adel Shahat, Cairo, 2019

To the soul of my Grandfather...

Abstract

Phytochemical and Biological Studies on *Pulicaria incisa subspecies candolleana* Family Asteraceae

Pulicaria incisa sub. candolleana E-Gamal Eldin (Asteraceae) is one of the neglected wild plants growing in Egypt. This study includes in-depth phytochemical and biological investigations on *P. incisa* sub. candolleana essential oils and aqueous ethanolic extract in addition to *in-silico* molecular docking study of the isolated compounds as anti-inflammatory drugs on COX-2 and S-PLA-2. The composition of the essential oils extracted from leaves and flowers was analysed by GC-MS where 49 and 68 compounds were identified accounting for 86.69% and 84.29%, respectively of the total detected constituents. The cytotoxic activity of both essential oils was evaluated against hepatocellular carcinoma cell line HEPG-2, using MTT assay and vinblastine as a reference where leaf oil showed higher activity with IC₅₀ 11.4 μg/mL compared with 37.4 μg/mL for flower oil. Their antimicrobial activity was also evaluated using agar well diffusion method. The MIC of both essential oils against the tested bacterial and fungal strains was obtained in the range of 0.49 – 15.63 μg/mL.

The phenolics and flavonoids were quantitatified in the aqueous ethanolic extract of P. *incisa* sub. canolleana then the main phenolic constituents were identified using HPLC-MS/MS of the extract where the results allowed tentative identification of thirteen phenolic compounds. Four compounds were isolated from the ethanolic extract using semi-preparative HPLC including; eugenol-1-O- β -glucoside, 5-O-caffeoylquinic acid, 3, 5-Di-O-caffeoylquinic acid, quercetin-3-O- β -glucoside. Their structures were elucidated using different spectroscopic analysis methods including 1D and 2D-NMR as well as by ESI/MS.

In-vitro study exhibited significant antimicrobial activity of the extract against some of the tested bacterial and fungal strains with MICs in the range of 1.9-7.81 μg/mL while showed a weak activity against others with MICs of 62.5 and 15.63 μg/mL. Moreover, *In-vivo* biological investigations showed the safety of the extract at dose 250 mg/kg as anti-hepatotoxic agent in methotrexate induced rats when compared to Silymarin with high antioxidant and anti-inflammatory activities. These results were further confirmed using *in-silico* screening of the isolated compounds as anti-inflammatory drugs through binding with COX-2 and S-PLA-2. Quercetin-3-O- β - glucoside showing the best docking energy score -19.12 kcal/mol against COX-2 and 3,5- Di-O-caffeoylquinic acid (-5.68 kcal/mol) was the most active one against S-PLA-2

Key words; *Pulicaria incisa* sub. canolleana, essential oil , GC/MS, Quantitative determination, HPLC/MS, phenolics, antimicrobial , hepatoprotective, anti-inflammatory, molecular docking, COX-2 , PLA-2

CONTENTS

List o List o List o	of Contents
List o	of Abbreviations
	duction
_	ew of Literature
I.	Folk Uses.
II.	Biological Activities of Different Extracts of Genus <i>Pulicaria</i>
	Antioxidant Activity Cytotoxic Activity
	- J
	Anti-microbial Activity Anti-inflammatory Activity
	5. Effect on CNS.
	6. Others
	Chemical Review of Different Classes of Active Constituents in Extracts of Genus Pulicaria. 1. Essential Oil 2. Fatty Acids and Other Contents 3. Flavonoids. 4. Phenolic Compounds. 5. Chalcones 6. Coumarins. 7. Terpenoids. 6.1. Monoterpenes 6.2. Sesquiterpenes 6.3. Diterpenes 6.4. Triterpenes
T	Family Astaragas
I. II.	Family Asteraceae
	Genus <i>Pulicaria</i>
	Pulicaria incisa
1 7 .	1 whole we hold
Mate	rial, Apparatus and Methods
Flowe	ter I: Investigation of Essential Oil Contents in the Leaves and ers of <i>Pulicaria incisa</i> sub. candolleana & Determination of Biological Activities

I.	Extraction of Essential Oils from Leaves and Flowers of <i>Pulicaria incisa</i> sub. candolleana
II.	GC/MS analysis of <i>Pulicaria incisa</i> sub. candolleana Essential Oils of Flowers and Leaves.
	Biological activities of <i>Pulicaria incisa</i> sub. candolleana Essential Oils from Leaves and Flowers. Cytotoxic Activity of Leaves and Flowers Essential Oil. Antimicrobial Activity of the <i>Pulicaria incisa</i> sub. candolleana Essential Oils.
_	er II: Phytochemical Investigations of the Ethanolic Extract of
	ria incisa sub. candolleana
I.	Preliminary Phytochemical Screening
II.	Quantitative Assay of Total Phenolic and Flavonoids Contents of <i>Pulicaria incisa</i> sub. candolleana Using Colorimetric Assay
III.	HPLC/MS-MS Analysis of the Aqueous Ethanolic Extract of <i>P. incisa</i> sub. candolleana
IV.	Fractionation of the 70% Aqueous Ethanol Extract of <i>P. incisa</i> sub. candolleana Leaves.
V.	Isolation and Identification of Compounds
	r III: Biological Investigations of the Ethanolic Extract of ria incisa sub. candolleana Aerial Parts
I.	Antimicrobial Activity of <i>Pulicaria incisa</i> sub. candolleana Ethanolic Extract
II.	Hepatoprotective Assay of <i>Pulicaria incisa</i> sub. candolleana Ethanolic Extract
Phytoc	er IV: Molecular Docking Study of the Isolated onstituents from <i>P. incisa</i> sub. candolleana as Antimatory Drugs
Refere	arynces

List of Figures

No.	Title of Figure	Page
1.	Inflorescence of Compositae	99
2.	Disc floret and ray floret of family compositae	99
3.	Total ion chromatogram of <i>P. incisa</i> sub. candolleana flowers essential oil	122
4.	Total ion chromatogram of <i>P. incisa</i> sub. candolleana leaves essential oil	123
5.	Cytotoxic activity of <i>P. incisa</i> sub. candolleana oils against HEPG2	125
6.	Standard calibration curve of gallic acid	131
7.	Standard calibration curve of quercetin	131
8.	Total ion chromatogram in the negative mode of the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	133
9.	Total ion chromatogram in the positive mode of the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	134
10.	(-) ESI-MS spectrum of identified compound 1 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	137
11.	(-) ESI-MS spectrum of identified compound 2 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	137
12.	(-) ESI-MS spectrum of identified compound 3 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	137
13.	(-) ESI-MS spectrum of identified compound 4 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	138
14.	(-) ESI-MS spectrum of identified compound 5 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	138
15.	(-) ESI-MS spectrum of identified compound 6 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	138
16.	(+) ESI-MS spectrum of identified compound 7 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	139
17.	(-) ESI-MS spectrum of identified compound 8 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	139
18.	(-) ESI-MS spectrum of identified compound 9 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	139

19.	(-) ESI-MS spectrum of identified compound 10 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	140
20.	(-) ESI-MS spectrum of identified compound 11 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	140
21.	(-) ESI-MS spectrum of identified compound 12 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana.	141
22.	(-) ESI-MS spectrum of identified compound 13 in the alcoholic extract of the	
	aerial parts of <i>P. incisa</i> sub. candolleana	141
23.	General Fractionation Scheme.	144
24.	¹ H-NMR of compound 1; Eugenol-1- O- <i>β</i> -glucopyranoside	148
25.	APT spectrum of compound 1; Eugenol-1- O- β -glucopyranoside	149
26.	HSQC correlations of compound 1; Eugenol-1- O- β -glucopyranoside	150
27.	COSY correlations of compound 1; Eugenol-1- O-β-glucopyranoside	151
28.	COSY correlations of compound 1; Eugenol-1- O- β -glucopyranoside	152
29.	(-) ESI-MS spectrum of compound 2; 5-Caffeoylquinic acid	155
30.	¹ H-NMR of Compound 2; 5-Caffeoylquinic acid	156
31.	¹³ C-NMR Spectrum of compound 2; 5-Caffeoylquinic acid	157
32.	HSQC Correlations of compound 2; 5-Caffeoylquinic acid	158
33.	HMBC Correlations of compound 2; 5-Caffeoylquinic acid	159
34.	COSY correlations of compound 2; 5-Caffeoylquinic acid	160
35.	(-) ESI-MS spectrum of compound 3; 3, 5- Di-O-caffeoyl quinic acid	163
36.	¹ H-NMR spectrum of compound 3; 3, 5- Di- <i>O</i> -caffeoyl quinic acid	164
37.	¹³ C-NMR spectrum of compound 3; 3, 5- Di- <i>O</i> -caffeoyl quinic acid	165
38.	HSQC Correlations of compound 3; 3, 5- Di-O-caffeoyl quinic acid	166
39.	HMBC Correlations of compound 3; 3, 5- Di-O-caffeoyl quinic acid	167
40.	COSY Correlations of compound 3; 3, 5- Di-O-caffeoyl quinic acid	168
41.	(-) ESI-MS spectrum of compound 4; Quercetin -3-O-β- glucoside	170
42.	¹ H-NMR of compound 4; Quercetin -3-O-β- glucoside	171
43.	Effect of different doses of $P.\ incisa$ sub. candolleana extract on (AST) , (ALT)	
	and (ALP) levels in methotrexate-induced hepatic dysfunction in rats	178

44.	Effect of different doses of <i>P. incisa</i> sub. candolleana extract on hepatic tissue	
	content of oxidative stress marker (MDA) in methotrexate-induced hepatic	
	dysfunction in rats.	181
45.	Effect of different doses of <i>P. incisa</i> sub. candolleana extract on hepatic tissue	
	content of reduced (GSH) and (SOD) activity in methotrexate-induced hepatic	
	dysfunction in rats	183
46.	Effect of different doses of <i>P. incisa</i> sub. candolleana extract on hepatic tissue	
	content of (TNF- α) and s (MPO) activity in methotrexate-induced hepatic	
	dysfunction in rats	186
47.	2D interaction of redocked pose of ibuprofen with the key amino acids in COX-	
	2 binding site.	196
48.	2D representation (a) & 3D representation (b) of the superimposition of the co-	
	crystallized (green) and the redocked pose (red) of ibuprofen in the COX-2	
	binding site with RMSD of 0.47Å	197
49.	2D diagram (a) 3D representation (b) of eugenol-1-O-β-glucoside in COX-2	
	binding site.	198
50.	2D diagram (a) 3D representation (b) of chlorogenic acid in the COX-2 binding	
	site.	198
51.	2D diagram (a), 3D representation of 3, 5-Dicaffeoylquinic acid in the COX-2	100
	binding site.	199
52.	2D diagram (a) 3D representation (b) of quercetin-3-O-β-glucoside in COX-2	
	binding site.	200
53.	2D interaction diagram showing the redocked pose interactions with the key	
	amino acids and calcium in S-PLA2 binding site	202
54.	2D representation (a), 3D representation (b) of the superimposition of the co-	
	crystallized ligand (green) and the redocked pose (red) in the PLA-2 binding	
	site with RMSD of 0.486Å.	203
55.	2D diagram (A) and 3D representation (B) of eugenol-1- O - β - glycoside in S	
	PLA-2 binding site.	204

56.	2D diagram (A) and 3D representation (B) of chlorogenic acid in the S-PLA-2	
	binding site.	205
57.	2D diagram (A) and 3D representation in (B) of 3,5-dicaffeoyl quinic acid in the S-PLA-2 binding site.	206
58.	2D diagram (A) and 3D representation (B) of quercetin-3- <i>O-β</i> - glycoside in S PLA-2 binding site.	207
	LA-2 billiding site.	207

List of Photos

No		Title	Page
	1.	Pulicaria incisa (Lam.) DC. blooming in desert	100
	2.	Pulicaria incisa (Lam) DC.	100
	3.	Leaves of <i>P. incisa</i> (Lam.) DC.	101
	4.	Pulicaria incisa subsp. candolleana	101
	5.	Silybum marianum	174
	6.	Liver of rats in normal control group (Group 1) showing normal histological	
		structure of the central vein and surrounding hepatocytes in the parenchyma	188
	7.	Liver of rats in methotrexate control group (Group 2) showing severe dilatation	
		and congestion on central vein with degeneration in surrounding hepatocytes	
		and fatty changes	188
	8.	Liver of rats in methotrexate control group (Group 2) showing magnification of	
		photo 7 to identify the dilated and congested central vein	189
	9.	Liver of rats in methotrexate control group (Group 2) showing magnification of	
		photo 7 to identify the fatty change in hepatocytes surrounding the central vein.	189
	10.	Liver of rats in methotrexate control group (Group 2) showing congestion in	
		portal vein.	190
	11.	Liver of rats in methotrexate control group (Group 2) showing few	
		inflammatory cells infiltration in portal area with fatty change in hepatocytes	190
	12.	Liver of rats treated by 100 mg extract of <i>P. incisa</i> sub. candolleana (Group 3)	
		showing mild congestion in central vein, few inflammatory cells infiltration in	
		portal area with few micro fat vacuoles in cytoplasm of hepatocytes	191
	13.	Liver of rats treated by 100mg extract of <i>P. incisa</i> sub. candolleana (Group 3)	
		showing magnification of photo 12 to identify inflammatory cells infiltration in	
		portal area and the few micro fat vacuoles in cytoplasm of hepatocytes	191
	14.	Liver of rats treated by 250 mg extract of <i>P. incisa</i> sub. candolleana (Group 4)	
		showing almost normal hepatocytes, mild dilatation in central vein with few	
		micro fat vacuoles in hepatocytes.	192