

# بسم الله الرحمن الرحيم



-Call 6000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار













بالرسالة صفحات لم ترد بالأصل



### ENVIRONMENTAL GEOLOGICAL HAZARDS OF SANA'A - DHAMAR BASINS, REPUBLIC OF YEMEN

By

BASSIM SHAIF A. KADER AL KHIRBASH (B. SC, Geology and Chemistry)

# A Thesis Presented in Partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE

**Geology Department Faculty of Science, Cairo University, Egypt** 

2003

B 11/2

#### **Approval Sheet**

Title of the M.Sc. Thesis

#### Environmental Geological Hazards of Sana'a-Dhamar Basins Republic of Yemen

By

Bassim Shaif AbdulKader Al Khirbash

Submitted to the Geology Department **Faculty of Science Cairo University** 

**Supervision:** 

Prof. Dr. Mohamed I. El-Anbaawy El-Anbaawy

Dr. Shawky M. Sakran

Dr. Ahmed M. Al-Kotba

E1-Anboom

**Head of Geology Department** 

Prof. Dr. Ahmed M. Al-kammar

#### **Supervisors**

#### Prof. Dr. Mohamed I. El Anbaawy

Professor of Geology

Geology Department, Faculty of Science, Cairo University

Cairo – Egypt

Dr. Shawky M. Sakran

Associated Professor of Structural Geology

Geology Department, Faculty of Science, Cairo University

Cairo – Egypt

Dr. Ahmed M. Al Kotba

Assistant Professor of Structural Geology

Earth and Environmental Science Department, Faculty of Science,

Sana'a University, Sana'a, Republic of Yemen

#### **Declaration**

This thesis, submitted in fulfillment of the requirement of the degree of Master of Science is a result of my personal research. The extent of my indebtedness to other sources is fully indicated in the text and references.

I further declare that this thesis has not already been accepted in substance for any degree and is not being submitted concurrently in candidature or any other degree.

Signature:

## INDICATED

То Му

PARENTS

#### **ACKNOWLEDGMENTS**

I am especially grateful to my supervisors Prof. Dr. Mohamed Ibrahim El-Anbaawy, professor of Environmental Geology, Faculty of Science, Geology Department, Cairo University and Executive Consultant of Cairo University center for Environmental Hazards Mitigation (CEHM). For suggesting the problem and supervising the whole thesis.

Without his encouragement, guidance, valuable scientific remarks, unfailing sincere help during the field and laboratory works this thesis could not be appeared by the present form.

The author is also deeply grateful to Dr. Shawky Mohamed Sakran, Assistant Professor of Structural Geology, Geology Department, Faculty of Science, Cairo University, for planning the present point of research, his encouragement, guidance, and sincere help and reviewing the thesis.

The author is also deeply grateful to Dr. Ahmed Mohamed Al Kotba Assistant Professor of Structural Geology, Earth science and environmental Department, Faculty of Science, Sana'a University, for his tireless supervision during the field work...

Special thanks are due to my colleagues of the Geology Dept. at the Universities of Sana'a and Cairo

Special thank are due to my colleague Mr. Khaled Al Selwi who helped me during the field work, Prof Salah Al Khirbash and Mr. Ahmed Al Aydrus for their encouragement, guidance, valuable remarks, Dr Ismail Al Janad and A. Aziz Salim and Tawfik A. Galel whom help me to obtain data, also Mr. Ismaiel Mogali, who

without his nice car driving the field trips might not be achieved. My thanks also to my mother, father, brother Nabil Al Khirbash and sisters for their unlimited encouragement and credible help, which can never be repaid and for their patience during my absence.

#### LIST OF CONTENTS

|                          |                                            | Page |  |     |
|--------------------------|--------------------------------------------|------|--|-----|
| DE                       | DICATION                                   | i    |  |     |
| AKNOWLEDGEMENT           |                                            |      |  |     |
| LIST OF CONTENT ABSTRACT |                                            |      |  |     |
|                          |                                            |      |  | LIS |
| LIST OF FIGURES          |                                            |      |  |     |
|                          | CHAPTER I INTRODUCTION                     |      |  |     |
| 1.1                      | Location and Accessibility                 | 1    |  |     |
| I.2                      | Physiography                               | 1    |  |     |
| I.3                      | Previous Work                              | 3    |  |     |
| I.4                      | Scope and Methodology of the Present Study | 13   |  |     |
|                          | CHAPTER II GEOLOGICAL SETTING              |      |  |     |
| 2.1                      | Regional Geology                           | 15   |  |     |
| 2.2                      | Geological Sitting of the Study Area       | 20   |  |     |
|                          | 2.2.1 Jurassic-Paleocene sedimentary rocks | 23   |  |     |
|                          | 2.2.2 Cenozoic volcanic rocks              | 34   |  |     |
|                          | CHAPTER III GEOMOROHOLOGICAL SETTING       | ,    |  |     |
| 3.1                      | Geomorphologic Units                       | 43   |  |     |
|                          | 3.1.1 Sedimentary plateau                  | 45   |  |     |
|                          | 3.1.2 High volcanic mountains              | 45   |  |     |
|                          | 3.1.3 Volcanic sheets                      | 47   |  |     |
|                          | 3.1.4 Volcanic cones                       | 52   |  |     |
|                          | 3.1.5 A'ithayn caldera                     | 52   |  |     |
| •                        | 3.1.6 Tectonic depressions                 | . 55 |  |     |
|                          | 3.1.7 Wadi plains                          | 56   |  |     |
|                          |                                            |      |  |     |

| 3.2 I | Orainage Pattern                                  | 58  |
|-------|---------------------------------------------------|-----|
|       | 3.2.1 Catchment areas                             | 58  |
|       | 3.2.2 Drainage patterns                           | 61  |
|       | CHAPTER IV STRUCTURAL SETTING                     |     |
| 4.1   | Regional Tectonics Sitting                        | 63  |
| 4.2   | Regional Structure                                | 67  |
| 4.3   | Major Faults                                      | 71  |
|       | 4.3.1 Fault population                            | 71  |
|       | 4.3.2 Geometrical analysis                        | 80  |
| 4.4   | Fracture Analysis                                 | 82  |
|       | CHAPTER V EARTHQUAKE HAZARDS                      |     |
| 5.1   | Earthquake Induced Processes                      | 92  |
|       | 5.1.1 Surface rupture                             | 94  |
|       | 5.1.2 Ground motion                               | 97  |
| 5.2   | Earthquake Hazard Assessment                      | 99  |
|       | 5.2.1 Active faults and epicental distribution    | 100 |
|       | 5.2.2 Recurrence interval                         | 102 |
|       | 5.2.3 Historical and recent earthquake in Yemen   | 104 |
|       | 5.2.4 Peak ground acceleration (PGA) maps         | 109 |
|       | 5.2.5 Probabililtic assessment of seismic hazards | 112 |
| 5.3   | Mitigating of Earthquake Hazards                  | 116 |
|       | CHAPTER VI LANDSLIDING AND INSTABILITY            | 7   |
|       | HAZARDS                                           |     |
| 6.1   | Landsliding Inventory Mapping                     | 120 |
| 6.2   | Causative Factors                                 | 128 |
| 6.3   | Landslide Hazard Zonation Mapping                 | 131 |

|       | 6.3.1 Lithology                                | 135 |
|-------|------------------------------------------------|-----|
|       | 6.3.2 Structural elements                      | 138 |
|       | 6.3.3 Slope morphometry                        | 140 |
|       | 6.3.4 Land use and land cover                  | 140 |
|       | 6.3.5 Relative relief                          | 143 |
| 6.3.6 | Groundwater Conditions                         | 143 |
| 6.3.7 | Climate                                        | 144 |
| 6.4   | Stability Analysis of Nakil Yasleh Landsliding | 147 |
| 6.5   | Mitigation Measures of Landsliding hazards     | 169 |
|       | CHAPTER VII VULCANICITY AND VOLCANIC           |     |
|       | HAZARDS                                        |     |
| 7.1   | Volcanic and Tectonic Activities.              | 171 |
| 7.2   | Quaternary Volcanic Fields                     | 172 |
| 7.3   | Volcanic Hazards                               | 183 |
|       | 7.3.1 Sana'a-Amran volcanic hazards            | 187 |
|       | 7.3.2 Dhamar-Rada volcanic hazards             | 189 |
| 7.4   | Mitigation Measures of Volcanic Hazards        | 189 |
|       | CHAPTER VIII SUMMARY AND CONCLUSIONS           |     |
| 8.1   | Geological Setup                               | 191 |
| 8.2   | Geomorphological Setting                       | 193 |
| 8.3   | Structural Framework                           | 195 |
| 8.4   | Earthquake Hazards                             | 198 |
| 8.5   | Landsliding and Instability Hazards            | 202 |
| 8.6   | Volcanic Hazards                               | 204 |
| 8.7   | Recomended Measures                            | 206 |
| 8.8   | Conclusions and Recommendation                 | 207 |
|       | References                                     | 210 |