

FAST AND PRECISE BINARY IMAGE DESCRIPTOR FOR AUTONOMOUS VEHICLE VISUAL LOCALIZATION

By

Ahmed Zakaria Abd El Khalek Bibars

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

FAST AND PRECISE BINARY IMAGE DESCRIPTOR FOR AUTONOMOUS VEHICLE VISUAL LOCALIZATION

By

Ahmed Zakaria Abd El Khalek Bibars

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Magdi Fikri Ragaey Dr. Mohsen Mohamed Mahroos

Professor of Communications

Assistant Professor

Electronics and Communications Eng. Dep.

Electronics and Communications Eng. Dep.

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

FAST AND PRECISE BINARY IMAGE DESCRIPTOR FOR AUTONOMOUS VEHICLE VISUAL LOCALIZATION

By

Ahmed Zakaria Abd El Khalek Bibars

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Magdi Fikri Ragaey, Thesis Main Advisor

Prof. Dr. Mohsen Abd El Razak Rashwan, Internal Examiner

Prof. Dr. Mohamed Ibrahim Aladawy, External Examiner - Helwan University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer:** Ahmed Zakaria Abd El Khalek Bibars

Date of Birth: 1 / 10 / 1984 **Nationality:** Egyptian

E-mail: ahmed.bibars@pg.cu.edu.eg

Phone.: 01000083714

Address: Haram, Giza, 12111

Registration Date : 1/10/2013 **Awarding Date :** //2019

Degree: Doctor of Philosophy

Department: Electronics and Communications Engineering

Supervisors: Prof. Dr. Magdi Fikri Ragaey

Dr. Mohsen Mohamed Mahroos

Examiners:

Prof. Dr. Mohamed Ibrahim Eladawy (External Examiner)

(Helwan University)

Prof. Dr. Mohsen Abd El Razak Rashwan (Internal Examiner)
Prof. Dr. Magdi Fikri Ragaey (Thesis Main Advisor)

Title of Thesis:

Fast and Precise Binary Image Descriptor for Autonomous Vehicle Visual Localization

Key Words:

Vehicle visual localization; Loop closer detection; Binary image descriptors; Multi hypothesis Markov filter; Autonomous driving vehicles

Summary:

Autonomous vehicle self-localization by scene matching under extreme environmental changes has been among the most challenging problems in robotics and computer vision in the last few years. Large dynamic illumination changes during day hours and appearance changes between year seasons are the major difficulties of this problem. This thesis presents: 1) a new binary image descriptor addressed as "Extended Local Difference Binary" (ELDB), which is an extension to the state-of the-art Local Difference Binary (LDB) image descriptor, and 2) a new algorithm for vehicle visual localization under extreme environmental changes that uses Multi-Hypothesis Markov Localization (MHML) as a data fusion algorithm, and uses ELDB for image matching. Experimental results presented in the thesis show that ELDB has better image matching accuracy and computational efficiency than LDB, and that the proposed vehicle visual localization algorithm is faster and more accurate than other state-of-the-art algorithms.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Zakaria Abd El Khalek Bibars	Date:
Signature:	

Dedication

This thesis is dedicated to my parents.

Acknowledgements

I would like to thank my supervisors Prof. Dr. Magdi Fikri Ragaey and Dr. Mohsen Mohamed Mahroos for their guidance, encouragement, support, and constant patience. It was a great honor to work with them.

I would like to give special thanks to my family; Thanks for your support and encouragement all the time.

Table of Contents

Di	sclain	ner			ì
De	edicat	ion			ii
A	cknow	ledgem	ients		iii
Ta	ble of	f Conte	nts		iv
Li	st of T	Tables			vii
Li	st of l	igures			viii
No	omeno	clature			xi
Al	bstrac	t			xii
1	1.1 1.2 1.3 1.4	Evolut Thesis	uction to vision of vision contribut	visual navigation	2
2	Lite	rature l			7
	2.1	2.1.1	Handera 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.1.5 2.1.1.6	ft image descriptors Local image descriptors Local vector based image descriptors Local binary image descriptors Global image descriptors Global vector based image descriptors Global binary image descriptors	77 88 99 10 12 12 13
	2.2	2.1.2 Vehicle		age features	
		2.2.1		ased methods	15 15 16
		2.2.2	Statistics 2.2.2.1 2.2.2.2	Particle filter	17 17
3				Image Matching	19
	3.1	Introdu	action		
	3.2	_		ssing	19 20

		3.2.2 Image illumination normalization	20
		3.2.3 Sky blacking	21
	3.3	Original LDB	21
	3.4	LDB drawbacks	23
	3.5	Extended local difference binary	25
		3.5.1 Exponential grid-side size growth	25
		3.5.2 Modified representative functions	27
	3.6	Image matching	27
	3.7	Panoramic images	28
4	Mul	ti Hypothesis Markov Localization	31
	4.1	Markov localization	
	4.2	Modified Markov localization filter	32
	4.3	Generating multiple hypotheses at street intersections	33
	4.4	Localization algorithm	33
5	Exp	erimental Work	38
	5.1	Experiment setup	38
	5.2	Datasets used in experiments	39
		5.2.1 Alderley dataset	39
		5.2.2 Surfers Paradise dataset	39
		5.2.3 Highway dataset	39
		5.2.4 CBD dataset	40
	5.3	Measuring image matching accuracy	41
		5.3.1 Alderley results	42
		5.3.2 Surfers Paradise results	45
		5.3.3 Highway results	48
		5.3.4 CBD results	51
		5.3.5 Summary of image matching results and comparison with other algorithms	54
	5.4	Accuracy under viewpoint change	57
	5.5	Descriptors processing time	
	5.6	Measuring localization algorithm accuracy	59
		5.6.1 Highway results after using MHML	60
		5.6.2 CBD results after using MHML	61
	5.7	Discussion	62
6	Con	clusion	65
	6.1	Thesis summary	65
	6.2	Achieved results	67
	6.3	Future research directions	68
		6.3.1 Use ELDB as a local image features descriptors	68
		6.3.2 Use Binary-CNN based image features	69
		6.3.3 Use CNN semantic segmentation to discard image area covered	
		by moving obstacles	70
Re	feren	ices	71

Appendix A	Random-LDB	77
Appendix B	Local ELDB Descriptor	81
Appendix C	AdaBoost Cell-Pairs Selection	83

List of Tables

Percent of correctly matched images in different datasets using linear and	
exponential ELDB1 and ELDB2, LDB, BoW/SURF, and NetVLAD	54
Percent of correctly matched images as a function in lane difference. Com-	
puted using the Highway dataset	57
Results of different algorithms on Highway dataset, where η is the per-	
centage of the correctly estimated locations, D is the maximum contin-	
uous uncertainty distance in meters, and F_{Search} and F_{Track} are the cycle	
rates at search and track phases, respectively. Algorithms without F_{Search}	
value in table are the algorithms that assume the initial vehicle location is	
known	61
Results of different algorithms on CBD dataset	63
Local ELDB matching results using Bikes image sequence	82
Local ELDB matching results using UBC image sequence	82
Local ELDB matching results using Trees image sequence	82
	puted using the Highway dataset. Results of different algorithms on Highway dataset, where η is the percentage of the correctly estimated locations, D is the maximum continuous uncertainty distance in meters, and F_{Search} and F_{Track} are the cycle rates at search and track phases, respectively. Algorithms without F_{Search} value in table are the algorithms that assume the initial vehicle location is known. Results of different algorithms on CBD dataset.

List of Figures

2.1 2.2	Matching two images using local extracted features [42] SIFT image descriptor. Left: grid is centered over the key point location with same orientation and scale of the key-point. Center: computing image local gradient over grid area. Right: computing cells gradient-	8
2.3 2.4 2.5 2.6	histograms. BRISK pattern [39]. FREAK pattern [2]. HOG. Difference matrix used two match pair of image sequences.	12 13
3.1	Sample of day and night images for the same place, and their illumination normalized versions.	22
3.2	Histogram for the different C values of the sky pixels and the ground pixels. Each of the two curves are normalized by the total number of sky and ground pixels respectively. The overlap between the two classes is	
3.3	8.6% [71]	23
3.4	(C) with all sky area pixels equal zero	24
3.5 3.6	cell-pair is marked by a line connecting the centers of the two cells Image matching cycle	26 28 29
5.1	Satellite images for Highway dataset vehicle trajectory [51]. In this dataset the vehicle took the same trajectory in both database image acquisition trip and real-time tripe. The trajectory is marked by a blue line in the image.	40
5.2	Satellite images for CBD dataset vehicle trajectories [51]. Database trajectory is shown in the left image marked by blue line, and real-time trajectory is shown in the right image marked by red line.	41
5.3	Accuracies of different descriptors as a function of descriptor length, for	
5.4	Alderley dataset	42 43
5.5	Correct matches curves of Alderley dataset. Percent of correct matches of ELDB1 _{Exponential} , ELDB2 _{Exponential} , and LDB are 26.56%, 22.58%, and	43
5.6	20.77%, respectively	

5.7	Accuracies of different descriptors as a function of descriptor length, for		
	Surfers Paradise dataset.	45	
5.8	Precision-recall curves of different descriptors, for Surfers Paradise dataset.	46	
5.9	Correct matches curves of Surfers Paradise dataset. Percent of correct		
	matches of ELDB1 _{Exponential} , ELDB2 _{Exponential} , and LDB are 78.67%,	1.0	
7.10	76.28%, and 58.8%, respectively	46	47
	Difference matrices of Surfers Paradise dataset using LDB and $ELDB_{Exponent}$ Accuracies of different descriptors as a function of descriptor length, for		4/
	Highway dataset.	48	
	Precision-recall curves of different descriptors, for Highway dataset	49	
5.13	Correct matches curves of Highway dataset. Percent of correct matches of ELDB1 _{Exponential} , ELDB2 _{Exponential} , and LDB are 51.65%, 45.56%,		
- 11	and 27.31%, respectively.	49	
	Difference matrices of Highway dataset using LDB and ELDB _{Exponential} .	50	
5.15	Accuracies of different descriptors as a function of descriptor length, for		
5.1 6	CBD dataset.	51	
	Precision-recall curves of different descriptors, for CBD dataset	52	
5.1/	Correct matches curves of CBD dataset. Percent of correct matches of		
	ELDB1 _{Exponential} , ELDB2 _{Exponential} , and LDB are 70.56%, 66.84%, and	50	
<i>5</i> 10	42.66%, respectively.	52 53	
	Difference matrices of CBD dataset using LDB and $ELDB_{Exponential}$ Sample of day/night frames that ELDB1 succeeded to match while LDB	33	
3.19	failed. The complexity of matching these images is mainly attributed to:		
	bad visibility conditions due to a raining storm in the two image pairs in		
	5.19a, crowded traffic that causes variation between the images in 5.19b,		
	and gradient inversion due to the presence of many artificial lighting sources		
	in 5.19c, in addition to gradient inversion at sky-area boarders in all images.	55	
5.20			
	while LDB failed. Each sub-figure shows query image in the top, and its		
	database match in the bottom. The major difficulties in matching these		
	images are: gradient inversion problem at sky area boarders and at loca-		
	tions of artificial lighting sources, and surrounding vehicles appear in the		
	images that cause variation between the two images, like in 5.20b. Fig-		
	ures 5.20a and 5.20b are from Highway dataset, while 5.20c and 5.20d	5 (
5 21	are from CBD dataset.	56	
5.21	Comparison between processing time of different descriptors at two dif-	<i>5</i> 0	
5 22	ferent maximum grid resolutions. Precision-recall curves of Highway dataset after using MHML	58 60	
	Correct matches curves of Highway dataset after using MHML	61	
	Precision-recall curves of CBD dataset after using MHML	62	
	Correct matches curves of CBD dataset after using MHML	62	
A .1	Image cells of random size and random locations	78	
A.2	Accuracy as a function of descriptor length in bits, for Highway dataset.	79	
	Accuracy as a function of descriptor length in bits, for CBD dataset.	80	

A.4	Descriptor processing time as a function of descriptor length in bits. RLDB	
	has higher processing time, while ELDB _{Linear} and LDB almost have iden-	
	tical curves	80

Nomenclature

ABLE Able for Binary-appearance Loop-closure Evaluation

BRIEF Binary Robust Independent Elementary Feature

BRISK Binary Robust Invariant Scalable Key-points

CCD Charge Coupled Device

CNN Convolutional Neural Networks

EKF Extended Kalman Filter

ELDB Extended Local Difference Binary

FAB-MAP Fast Appearance-Based Mapping

FREAK Fast Retina Key-point

GP-GPU General-Purpose Graphics Processing Units

GPS Global Positioning System

HOG Histogram of oriented gradient

IMU Inertial Measuring Unit

LDB Local Difference Binary

LiDAR Light Detection And Ranging

MHKF Multi-Hypothesis Kalman Filter

MHML Multi-Hypothesis Markov Localization

ORB Oriented FAST and Rotated BRIEF

PF Particle Filter

PROSAC Progressive Sample Consensus

RANSAC Random Sample Consensus

SAD Sum of Absolute Difference

SeqSLAM Sequence SLAM

SIFT Scale Invariant Feature Transform

SMART Sequence Matching Across Route Traversals

SURF Seeded Up Robust Features

VLAD Vector of Locally Aggregated Descriptor

YOLO You Only Look Once