

Ain Shams University Faculty of Engineering Design & Production Engineering Department

COMPUTATION OF OPTIMAL POCKETING TOOL PATH USING GENETIC ALGORITHM

By

Eng. Ahmed Sabry Shawky Abdel-Salam

This thesis is submitted for partial fulfilment for the Requirement for the Degree of

Master of Science in Mechanical Engineering

Examiners Committee

Prof. Dr. Mohamed Abdel Mohsen Sayed Mahdy

Prof. Dr. Abdel Fatah Moustafa Khourshid

Prof. Dr. Atef Afifi Afifi

Asoc. Prof. Mohamed Ahmed Awad

Date: / / 2019

Professor of Production Engineering
Faculty of Engineering

Ain Shams University

Dean and Professor of Production Engineering

Faculty of Engineering

Modern University for Technology & Information

Professor of Production Engineering

Faculty of Engineering German University in Cairo

Asoc. Professor of Production Engineering

Faculty of Engineering
Ain Shams University

Statement

This dissertation is submitted in partial fulfillment for the degree of Master of Science in Mechanical Engineering, Design & Production Engineering Department.

The work included is this thesis was carried out by the author in the Design & Production Engineering Department, Faculty of Engineering, Ain Shams University.

No Part of this thesis was submitted for a degree or a qualification at any other university or institution.

Ahmed Sabry Shawky Abdel-Salam

Signature

Acknowledgment

First of all, thanks and indebtedness are due to **ALLAH** who made this work possible.

I am immensely grateful to Prof. Atef Afifi Afifi for his sharing of my excitement as well as frustrations in this research. Without his constant support, encouragement and guidance, this work wouldn't be possible.

I also would like to thank Assoc. Prof. Mohamed Ahmed Awad for providing valuable advice on various occasions during this study and for reading the dissertation and providing valuable comments.

I deeply thank my family and my friends. Their love and support are a constant inspiration to me in striving to improve myself.

Abstract

The calculation of the optimal path of the tool during the machining process is one of the most important steps in the entire production process. The length of the tool path affects the machining time, which affects the cost of the manufacturing process. This is why an algorithm was created to calculate the optimal path for pocketing using genetic algorithms. This algorithm consists of four main modules.

The first module is to extract the engineering data stored in a file of the programs to increase the efficiency of the proposed algorithm. The neutral data files were selected to transfer the data from the CAD softwares and select the files (STEP and DXF). The STEP file was selected specifically as it is one of the most recent files where the DXF file is the most common of the files used in CAD softwares.

The second module is to recognize all pockets types like circular pockets, rectangular pockets and irregular shapes pockets and also to recognize all holes types.

The third module is to calculate the tool path for all pockets types, Therefore, five strategies used to calculate the tool path of the cutter (Contour Offset, Horizontal Zig Cut, Vertical Zig Cut, Horizontal Zigzag cut, Vertical Zigzag Cut), Then the shortest path length is selected.

The fourth module is to calculate the non-productive time, which is the transfer of the tool from the end of each pocket or hole to the beginning of the next pocket or hole. Genetic algorithms were selected to calculate the optimal tool path which represents the least time to move the tool in the air without cutting.

This algorithm has been implemented by Java language since it does not depend on a specific operating system and is suitable for all systems. The validity of the proposed algorithm was tested by four cases study, which included the various types of pockets expected from circular pockets, rectangular pockets, irregular pockets, and holes of different types. The length of the tool path was calculated using different methods and the best method was calculated to be the smallest value. It is noted that there is no specific strategy for all pockets, but it depends on its shape. It is necessary to calculate the tool paths for each pocket by all strategies not with a specific one. Concerning non-productive tool path, genetic algorithms were applied to find the best path to be chosen, where the shortest route was, and the path was calculated and compared manually. Thus, this proposed system has proved successful in selecting the shortest path in all cases tested.

Chapter 1

Introduction

This research is focused on developing the methodologies required to optimize the productive and nonproductive tool movements for 2.5 D axis milling machines using generic computer-based techniques, while taking into account the non-productive tool movement between different pockets will result in the reduction of non-machining time using GA (Genetic Algorithm).

This problem can be solved by defining the available dimension of each pocket, its position relative to its component origin, which will seek the minimization of non-productive tool movement and using an optimization algorithm to optimize tool path to reduce machining time.

1.1 Thesis Outline

This thesis consists of six chapters:

Chapter 1 "Introduction"

This chapter discussed and defined different terms used in this study, which are:

- 1. CNC Machine Concept
- 2. Computer Aided Manufacturing
- 3. Pocketing
- 4. Genetic Algorithm

Chapter 2 "Literature Review"

In this chapter the important criteria of CAM and computer aided part programming systems will be discussed. Feature recognition, Genetic algorithm and general review of previous works in computer aided manufacturing, pocketing and part programming systems are presented.

Chapter 3 "Optimization"

This chapter defined the meaning of genetic algorithm and its procedures and compare between it and other algorithms.

Chapter 4 "Algorithm Implementation"

This chapter discussed and defined how the software extracted data and recognized all feature from the STEP and DXF files and how to calculate optimized productive and non-productive time.

Table of Contents

Statementi
Acknowledgmentii
Abstractiii
Table of Contentsiv
List of Figuresviii
List of Equationsxi
Chapter 1 Introduction 1
1.1 Thesis Outline
1.2 Milling process
1.2.1 Pocketing 2
1.2.1.1 Pocket milling tool paths
1.2.1.2 Optimization aims4
1.3 Computer Aided Manufacturing
1.4 Neutral CAD data file5
1.4.1 STEP6
1.4.2 DXF6
1.4.2 DXF
1.4.3 IGES 6
1.4.3 IGES
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9 2.3 Pocket Machining 10
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9 2.3 Pocket Machining 10 2.4 Problem Definition 13
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9 2.3 Pocket Machining 10 2.4 Problem Definition 13 2.5 Aim of work 13
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9 2.3 Pocket Machining 10 2.4 Problem Definition 13 2.5 Aim of work 13 Chapter 3 Optimization 14
1.4.3 IGES 6 Chapter 2 Literature Review 8 2.1 Feature Recognition 8 2.2 Optimization 9 2.3 Pocket Machining 10 2.4 Problem Definition 13 2.5 Aim of work 13 Chapter 3 Optimization 14 3.1 Multi Component Manufacture 14

3.3.2 Application of GA	16
3.3.3 Fitness Function	16
3.3.4 Population Size	17
3.3.5 Selection Operators	17
3.3.6 Crossover	18
3.3.7 Mutation	20
3.4 Genetic algorithm and other algorithms	21
3.5 Genetic algorithm and Particle Swarm Optimization	22
3.6 GA and Ant Colony Optimization	23
3.7 Genetic Algorithm and Simulated Annealing	24
Chapter 4 Algorithm Implementation	26
4.1 Data Extraction Module	26
4.1.1 STEP file Module	27
4.1.2 DXF file Module	29
4.1.2.1 Views separation	30
4.1.3 Shifting data to origin	30
4.2 Feature Recognition Module	31
4.2.1 Recognition of holes	31
4.2.1.1 Recognition of circular pockets	33
4.2.2 Recognition of internal contours	34
4.2.2.1 Recognition of rectangular pockets	35
4.2.2.2 Recognition of Keyways:	36
4.3 Productive Time Calculation Module	39
4.3.1 Circular Pockets	40
4.3.1.1 Keyways	41
4.3.1.2 Internal Contours	43
4.3.1.2.1 Roughing Tool Path Calculation:	44
4.3.1.2.2 Contour Offset Strategy:	46
4.3.1.2.3 Zigzag Strategy	47
V	

4.3.2 Productive time calculation	. 49
4.4 Non-Productive Time Calculation and Optimization using Genetic Algorithm Module	. 50
4.4.1 Optimization Module	. 51
4.4.2 Initial Population	. 51
4.4.3 Fitness Evaluation	. 52
4.4.4 Selection of Parents	. 55
4.4.5 Crossover	. 55
4.4.6 Mutation	. 56
4.4.7 Insert Children	. 56
Chapter 5 Cases Studies	. 51
5.1 Case Study No. 1	. 58
5.2 Case Study No. 2	. 59
5.3 Case Study No. 3	. 61
5.4 Case Study No. 4	. 65
Chapter 6 Software User Guide	. 71
6.1 Database module	. 71
6.1.1 Machine tool database	. 71
6.1.1.1 Machine input data	. 72
6.1.1.2 Selection of suitable machine	. 73
6.1.2 Tools database	. 74
6.1.2.1 Tool input data	. 75
6.1.2.2 Available tools	. 76
6.1.3 Work piece material database	. 77
6.1.3.1 Work piece material data input	. 78
6.1.3.2 Work piece material data selection	. 79
6.2 Run Procedures	. 80
6.2.1 Reading data by the software	. 80
6.2.2 Selection of the data file	80

6.2.3 Display of results of extracted data	81
6.2.4 Optimization Module	82
6.2.5 Saving the final results	82
Chapter 7 Conclusion and future work	83
7.1 Conclusion	83
7.2 Future Work	84
References	85
Appendix A	88
Appendix B	100

List of Figures

Figure 1-1 Milling Processes	2
Figure 1-2 Pocket milling operation	3
Figure 1-3 Different milling toolpaths	4
Figure 2-1 Types of tool path trajectories	. 12
Figure 2-2 Toolpath generation type	. 13
Figure 3-1 1-point crossover	. 19
Figure 3-2 N-point crossover	. 19
Figure 3-3 Uniform crossover	. 19
Figure 3-4 Insert mutation	. 20
Figure 3-5 Swap mutation	. 21
Figure 3-6 Inversion mutation	. 21
Figure 3-7 Scramble mutation	. 21
Figure 4-1 Algorithm outline	. 26
Figure 4-2 Flow chart for data extraction module	. 27
Figure 4-3 Structure of STEP file	. 28
Figure 4-4 Flowchart for data extraction from DXF file	. 29
Figure 4-5 Point of separation between two the views	. 30
Figure 4-6 The outputs of feature recognition module	. 31
Figure 4-7 Recognition of Tapped holes, Flat ended holes	. 32
Figure 4-8 Flowchart how to recognize tapper ended and flat ended holes	. 32
Figure 4-9 Recognition of circular pockets	. 33
Figure 4-10 Flowchart how to recognize circular pockets	. 33
Figure 4-11 Example for internal contour	. 34
Figure 4-12 flowchart how to recognize internal contours	. 34
Figure 4-13 Example for rectangular pocket	. 35
Figure 4-14 flowchart how to recognize rectangular pocket	. 36
Figure 4-15 Keyways classification	. 37
Figure 4-16 Example for extracted keyway	. 37

Figure 4-17 flowchart how to recognize keyway	38
Figure 4-18 Different machining strategies	39
Figure 4-19 Different machining strategies tool paths	39
Figure 4-20 Flowchart for circular pocket productive time calculation	40
Figure 4-21 Circular pocket path	41
Figure 4-22 Flowchart for keyway productive time calculation	42
Figure 4-23 Keyway Tool Path	43
Figure 4-24 Internal Contour Machining Sequence	43
Figure 4-25 Roughing Tool Path	44
Figure 4-26 Productive Time for Roughing Tool Path Calculation	45
Figure 4-27 Productive Time Calculation for Contour Offset Strategy	46
Figure 4-28 Contour Offset Tool Path	47
Figure 4-29 Productive Time for Zigzag Strategy	48
Figure 4-30 Zigzag Tool Path	49
Figure 4-31 Crossover Process	56
Figure 4-32 Mutation Process	56
Figure 5-1Case Study No.1 Drawing	58
Figure 5-2 Case Study No.2 Drawing	59
Figure 5-3 Case Study No. 3 Drawing	61
Figure 5-4 Case Study No.4 Drawing	65
Figure 5-5 Pocket No.1 Machining Tool Paths	66
Figure 5-6 Pocket No.2 Machining Tool Paths	66
Figure 5-7 Pocket No.3 Machining Tool Paths	67
Figure 5-8 Pocket No.4 Machining Tool Paths	67
Figure 5-9 Pocket No.5 Machining Tool Paths	68
Figure 5-10 Pocket No.6 Machining Tool Paths	68
Figure 6-1 Machine tool Setup	71
Figure 6-2 Machine input data form	72
Figure 6-3 Warning massage for incomplete machine data	73

Figure 6-4 Information message	73
Figure 6-5 Selection of a suitable machine	73
Figure 6-6 Information message	74
Figure 6-7 Tools setup	74
Figure 6-8 Tool creation menu	75
Figure 6-9 New tool data input	75
Figure 6-10 New tool data input confirmation	76
Figure 6-11 Warning message for incomplete tool data	76
Figure 6-12 Tool selection	77
Figure 6-13 Work piece setup	78
Figure 6-14 New work piece data input	78
Figure 6-15 Work piece data confirmation	79
Figure 6-16 Warning message for incomplete work piece data	79
Figure 6-17 Work piece database	79
Figure 6-18 Main form	80
Figure 6-19 Importing data file	81
Figure 6-20 Feature recognition output form	81
Figure 6-21 Genetic algorithm data input	82
Figure 6-22 Warning message for incomplete genetic algorithm data	82

List of Equations

Equation 4-1 Machining time calculation	49
Equation 4-2 Feed calculation	49
Equation 4-3 Cutter speed calculation	49
Equation 4-4 Total time calculation	53
Equation 4-5 Distance between two points calculations	54
Equation 4-6 Distance travelled between first reference point and the point machining calculation	
Equation 4-7 Distance travelled between first and second reference points calculation	54
Equation 4-8 Time consumed to change from tool to another calculation	54
Equation 4-9 Distance travelled in Z axis from first reference point to the approach point	54
Equation 4-10 Total distance travelled in Z axis	54
Equation 4-11 Distance travelled between two points in Z axis	55
Equation 4-12 Total Distance travelled in Z axis	55

Statement

This dissertation is submitted in partial fulfillment for the degree of Master of Science in Mechanical Engineering, Design & Production Engineering Department.

The work included is this thesis was carried out by the author in the Design & Production Engineering Department, Faculty of Engineering, Ain Shams University.

No Part of this thesis was submitted for a degree or a qualification at any other university or institution.

Ahmed Sabry Shawky Abdel-Salam

Signature

Acknowledgment

First of all, thanks and indebtedness are due to **ALLAH** who made this work possible.

I am immensely grateful to Prof. Atef Afifi Afifi for his sharing of my excitement as well as frustrations in this research. Without his constant support, encouragement and guidance, this work wouldn't be possible.

I also would like to thank Assoc. Prof. Mohamed Ahmed Awad for providing valuable advice on various occasions during this study and for reading the dissertation and providing valuable comments.

I deeply thank my family and my friends. Their love and support are a constant inspiration to me in striving to improve myself.