

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

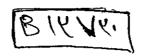
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

"Narrow-Gap CO2-Welding in the Vertical Position"

A thesis submitted to the University of Alexandria, Faculty of Engineering, Production Engineering Department

for the degree of

Doctor of Philosophy

in Production Engineering

By:

Eng. Magdy Mostafa El Rayes

Supervised by:

Prof. Dr. Aly El Ashram

Prof. Dr. Mahmoud Hamed

Production Engineering Dept.,

Faculty of Engineering,

University of Alexandria

Prof. Dr. Eng. Lutz Dorn

Head of Welding Institute,

Technical University of Berlin,

Germany

Alexandria, December 1994

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality, as a disertation for the degree of Doctor of Philosophy.

Exam committee :-

1. Prof. Dr. Ahmed Salem El-Sabagh,

almit a Son T

Department of Mechanical Design and Production,

Faculty of Engineering - University of Ein Shams.

2. Prof. Dr. Mohamed Rashad El-Hebiry,

Department of Mechanical Engineering,

Faculty of Enigneering - University of Cairo.

Exam and Supervisory committee:-

1. Prof. Dr. Aly El-Sayed El-Ashram,

Department of Production Engineering,

Faculty of Engineering - University of Alexandria.

2. Prof. Dr. Eng. Lutz Dorn,

Welding Institute,

Technical University of Berlin.

For the Faculty Council:-

Prof. Dr. Adel Mohamadein

Vice Dean for Graduate Studies & Research,

Faculty of Engineering - University of Alexandria.

This work is the result of mutual co-operation between the Technical University of Berlin, Germany and the University of Alexandria, Egypt under the regulation of the joint scientific channel program, the experimental work has been carried out in the laboratories of the Welding Institute - Technical University of Berlin.

	List of Contents:	Page
•	Acknowlegement	i,
	Abstract	ii
	Chapter I, " Introduction and Basic Principles "	1
1.1.	Preface	1
1.2.	Terminology and Definitions	1
1.3.	Basics of GMAW Technology	5
1.3.1.	Wire Feed Speed and Welding Current	5
1.3.2.	Wire Extension	7
1.3.3.	Arc Voltage	7
1.4.	Technical and Operational Aspects of NG-GMAW	7
1.4.1.	Wire and Gas Feeding Techniques	7
1.5.	Modes of Metal Transfer in GMAW	10
1.5.1.	Short Circuit Transfer	10
1.5.2.	Globular Transfer	11
1.5.3.	Spray Transfer	13
1.6.	CO ₂ -Welding	13
1.6.1.	Chemical Activity of CO ₂	14
1.6.2.	Properties of Weld Metal	15
1.6.2.1	I. Mechanical Properties	15
1.6.2.2	2. Metallurgical Properties	16
1.6.2.3	3. Soundness	18
1.6.3.	Operating Characteristics of a pure CO ₂ Atmosphere	18
1.7.	Pulsed Current Arc Welding	19
1.7.1.	Variables in Pulsed Current Welding	19
1.7.2.	Drop Detachment	19
1.7.3.	Arc Stability	21
1.7.4.	General Comparison between Direct and Pulsed Current Welding	21
1.7.4.3	1. Process Set-Up	21

1.7.4.2	Power Source Capability	21
1.7.4.3	Penetration	22
1.8.	Power Source Output Characteristics	22
1.8.1.	Different Power Source Output Characteristics	. 22
1.8.2.	Methods for limiting the Short Circuit/Current during CO2-Welding	24
1.8.2.1	. Limitation by Inductance	24
1.8.2.2	Limitation by Increasing the Reactance of the Power Transformer	25
1.9.	Advantages and Drawbacks	25
	Chapter II, " Litrature Review "	27
2.1.	Introduction	27
2.2.	Modes of Metal Transfer in CO ₂ -Welding	27
2.2.1.	Short Circuit Transfer	27
2.2.1.1	. Dynamic Action of the Arc and Mechanism of Spatter	29
2.2.1.2	. Parameters affecting Spatter	32
2.2.1.3	. Control of Short Circuit Current	34
2.2.1.4	. The Role of the Dynamic Properties of Current Supply Source	35
2.2.1.5	. Effect of Explosion on Penetration	37
2.2.2.	Globular Transfer	39
2.2.2.1	. Metal Spatter during Globular Transfer	41
2.3.	Heat Content of Droplets	43
2.3.1.	Effect of Current Density and Electrode Polarity on Droplet	
	Heat Content	43
2.3.2.	Effect of Welding Parameters during Pulsed Current Welding	43
2.4.	Arc Stability	46
2.4.1.	Different Aproaches in Evaluating Welding Process Stability	46
2.4.2.	Arc Stability Criteria	47
2.5.	Objective of the Present Work	48

	Chapter III, " Experimental Work "	49
3.1.	Introduction	49
3.2.	Materials	49
3.2.1.	Base Metal	49
3.2.2.	Filler Wires	51
3.2.3.	Shielding Gas	51
3.3.	Power Source	54
3.4.	Welding Experiments Set-Up	54
3.5.	Program of Experiments	58
3.6.	Testing	59
3.6.1.	Metallographic Testing	59
3.6.1.1.	Microstructure Studies of Weld and HAZ	59
3.6.1.2.	Dilution	62
3.6.2.	Mechanical Testing	62
3,6,2,1,	Microhardness Test	62
3.6.2.2.	Tensile Test	62
3.6.2.3.	Impact Test	62
3.6.2.4.	Micro-Shear Test	64
	Chapter IV, " Assessment of Process Characteristics "	66
4.1.	Thermal Cycle	66
4.1.1.	Heating and Cooling Sequence	66
4.2.	The "Over Flow "Problem	68
4.3.	Heat Input per Unit Length	70
4.3.1.	Effect of (R%) on Heat Input per unit Length	70
4.3.2.	Effect of (R%) on Mean Current (Im)	72
4.4.	Process Analysis and Stability	75
4.4.1.	Process Analysis	75
4.4.1.1.	Short Circuit Phase	75
4.4.1.2	Arc Break Down Phase: (Arc Extinguishing)	77

4.4.1.3.	Wire Sticking Phase: (Stubbing)	77
4.4.2.	Process Stability	77
4.4.2.1.	Effect of (R%)	. 79
4.4.2.2.	Effect of Gap Width	81
4.4.3.	Number of Short Circuits per Second: (Short Circuit Frequency)	81
4.4.3.1.	Effect of Gap Width	81
4.5.	Metal Losses	87
4.5.1.	Effect of Gap Width	90
	Chapter V, " Metallographic Examination Results "	94
5.1.	Introduction	94
5.2.	Cap and Root Appearances	94
5.3.	Bead Shape	99
5.4.	Dilution	109
5.5.	Microstructure of Welded Joints	112
5.5.1.	Weld Metal	112
5.5.1.1.	Effect of Gap Width	112
5.5.1.2.	Effect of (R%)	119
5.5.2.	Heat Affected Zone (HAZ)	119
5.5.3.	Specimens Welded With Flux Cored Wire	119
	Chapter VI, " Assessment of Mechanical Properties "	123
6.1.	Microhardness Test Results	123
6.1.1.	Effect of Gap Width	125
6.2.	Tension Test Results	125
6.3	Impact Test	128
6.3.1.	Effect of Pulse Frequency	128
6.3.2.	Effect of Gap Width on Impact Work	132
6.3.3.	Effect of Type of Current on Impact Work	134
6.4.	Micro-Shear Test Results	134
6.4.1.	Micro-Shear Strength at Weld Metal	134

(a)

6.4.2.	Micro-Shear Strength at the Fusion Line	136	
6.4.3.	Micro Shear Strength at the HAZ	136	
6.4.4.	Effect of Gap Width	136	
6.4.5.	Effect of Type of Current	139	
	Chapter VII, " Conclusions "	140	
	References	142	
	Published Work	147	

.

.

ACKNOWLEDGMENT

I am indebted to Prof. Dr. Aly El Ashram and Prof. Dr. Mahmoud Hamed for their dynamic involvement in Alexandria and Berlin, constructive guidance and unlimited help in revising and correcting this work.

I also wish to express my sincere thanks and deepest gratitude to Prof. Dr. Lutz Dorn for hosting me in his department, providing materials and facilities, his encouragement and his knowledgeous discussions.

The faithful help and assistance given by Mr.D.Chmilewski, Mr.H.Luedtke, Mr.A.Trampenau and all co-workers at the institute's work shop and laboratories are gratefully acknowledged.

Abstract

MIG welding using Narrow-Gap Welding technique (NGW) is a well known process in which the gap width, depending on plate thickness, varies between 7 to 30 mm and is mostly applied in the flat position.

In this work, a narrow-gap technique has been developed for welding mild steel plates in which reduced gap width between 3 to 5 mm has been used. Such narrow width was made possible by keeping the contact tube outside the gap and making use of a long stick-out. Welded plate thickness had been limited up to 12 mm, which is the most widely used in the welded structures. Moreover, carbon dioxide was used as a shielding gas, which is the most economic compared to other gases normally used. Welding has been performed in the vertical-up position in one single pass. Welding experiments had been conducted using either direct or pulsed current under different frequencies and off-time ratios of pulse. The filling wire was either solid or flux cored.

The results show that the above described process could be used successfully to weld steel plates in the vertical position without weaving motion. With respect to the mechanical properties, the narrower gap of 3 mm achieved a better toughness and strength. On the other hand, welding with 5 mm gap gave more stable process. Metallographic studies showed that the narrower the gap width the finer is the weld metal microstructure.

The proposed combination is recommended as a most economical process for fabricating welded structures such as tanks in which the plate thickness rarely exceeds 16 mm.