سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

DESIGN AND PERFORMANCE OF CUTING TOOLS OF CHOPPING MACHINES OF AGRICULTURAL CROP RESIDUES

by

RABIE AHMAD HABIB

B.Sc., Mech. Eng., Tishreen University, Syria, 1990 M.Sc., Mech. Power Eng., Cairo University, Egypt, 1999

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

In

MECHANICAL ENGINEERING

Under Supervision of

G. NASR

Prof. Dr. Ali A. Khattab

Professor of Mechanical Design Mechanical Design & Production Dept. Faculty of Engineering

Cairo University

Prof. Dr. Gamal El deen M. Nasr

Professor of Agricultural Engineering
Agricultural Engineering Dept.

Paculty of Agriculture
Cairo University

Design
ion Dept.

Dr. Badr S. Azzam

Assist. Professor of Mechanical Design Mechanical Design and Production Dept.

Faculty of Engineering Cairo University.

FACULTY OF ENGINEERING - CAIRO UNIVERSITY
GIZA, EGYPT

2002

B

DESIGN AND PERFORMANCE OF CUTING TOOLS OF CHOPPING MACHINES OF AGRICULTURAL CROP RESIDUES

by

RABIE AHMAD HABIB

B.Sc., Mech. Eng., Tishreen University, Syria, 1990 M.Sc., Mech. Power Eng., Cairo University, Egypt, 1999

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

In

MECHANICAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Ali A. Khattab

Thesis Main Advisor

Prof. Dr. Mohamed K. Bedewy

Member

Prof. Dr. Waheed Y. Ali

Member

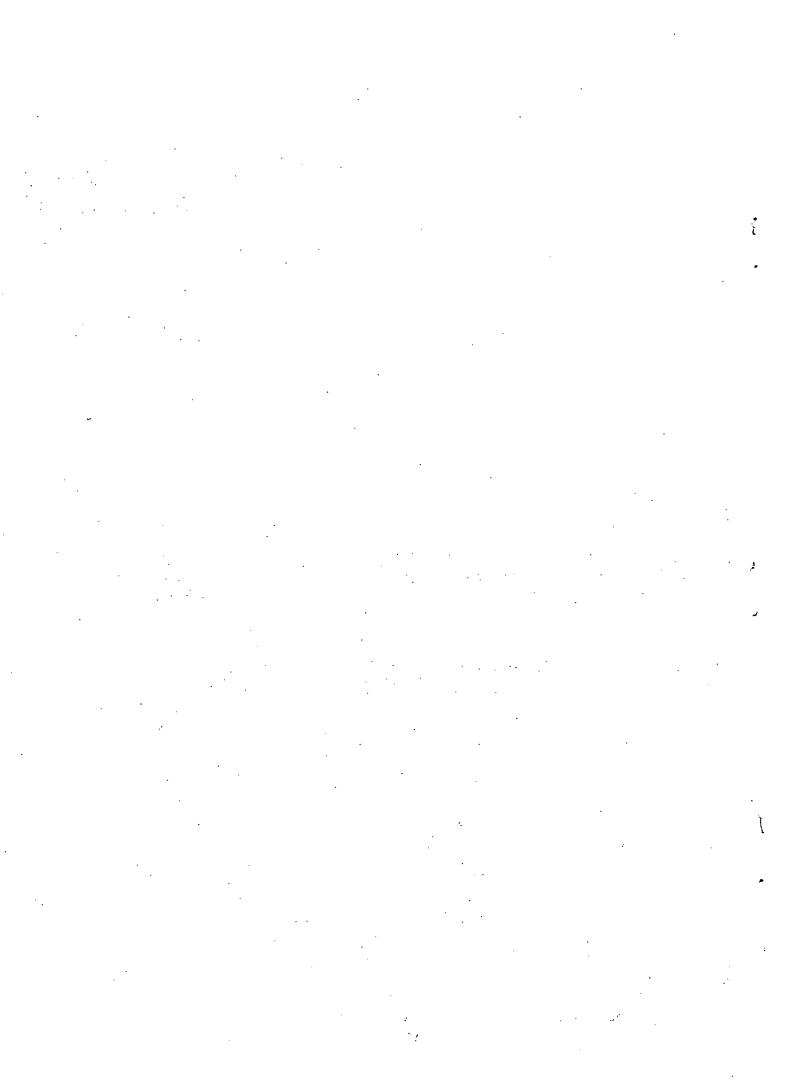
FACULTY OF ENGINEERING - CAIRO UNIVERSITY GIZA, EGYPT 2002

LIST OF CONTENTS

List of contents	iv
Abstract	ix
Nomenclature	χv
Acknowledgment	xiv
List of figures	xvi
List of tables	xxi
CHAPTER 1: REVIEW OF LITERATURES	
1.1 Introduction	1
1.2 Background Overview	5
1.2.1 Description of plant materials	5
1.2.1.1 Structure	5
1.2.1.2 Mechanical and physical properties	6
1.2.2 Cutting machines	7
1.2.2.1 Definitions	9
i. Cutting tool	9
ii. Counter-shear	9
iii. Configuration of cutting tool	10
1.2.3 Theory of cutting process	13
1.2.4 Edge and wedge forces of the cutting process	13
1.2.5 Previous studies	16
1.2.5.1 Physical and mechanical properties of plant material	16
1.2.5.2 Energy requirement	18
1.2.5.3 Performance	20
1.2.5.4 Theoretical study and Other Operational Factors	- 23
1.2.5.5 Utilization of agricultural crop residues	25
i. Compost production	26
ii. Animal feeding production	26
iii. Energy production	26

iv. Wood Manufacture	27			
v. Unconventional bricks	27			
CHAPTER 2: TREORETICAL ANALYSIS OF AGRICUTURAL CUTTING PROCESS				
2.1 Introduction	28			
2.2 Methods of Cutting Plant Material	28			
2.3 Force Analysis of Cutting process	29			
2.3.1 Cutting with counter-shear				
2.4 Energy Requirement of Cutting Process	36			
CHAPTER 3: IMPACT CUTTING PROCESS INERTIA "FREE CUTTING"				
3.1 Introduction	39			
3.2 Force Analysis of Free Cutting Process	40			
3.2.1 Bending Force	42			
3.2.2 Tension force	42			
3.2.3 Cutting force	43			
3.2.4 Equivalent mass	43			
3.3 Cutting Knife Velocity	45			
3.3.1 Special cases	46			
i. Free cutting of semi-dry plants	46			
ii. Free cutting of dry-plants	46			
3.3.2 Case Study	47			
3.4 Analysis of Results of the Free-Cutting Process	48			
CHAPTER 4: NUMERICAL ANALYSIS OF AGRICULTURAL CUTTING TOOLS				
4.1 Introduction	49			
4.2 Finite Element Package	51			
4.3 Numerical Models	51			
4.4 Effect of Edge Geometry and Configuration on Lifetime of Cutting Tool	54			

4.4.1 Effect of edge angle	54			
4.4.2 Effect of edge thickness	55			
4.4.3 Effect of edge configuration	56			
4.4.4 Effect of tool clamping method	57			
CHAPTER 5: EXPERIMENTAL WORK				
5.1 Introduction	58			
5.2 Physical and Mechanical Properties of Maize and Cotton Stalks				
5.2.1 Physical properties	60			
5.2.2 Mechanical properties	61			
5.2.2.1 Specimens preparation	61			
5.2.2.2 Tensile testing	63			
5.3 Specification of the Cutting Machine	66			
5.3.1 Machine description	66			
5.3.2 Machine specifications	67			
5.4 Cutting Tools	74			
5.4.1 Materials properties	74			
5.4.2 Manufacturing of cutting tools	75			
5.4.2.1 Original Cutting Tool	76			
5.4.2.2 Local cutting tools	78			
5.4.3 Manufacturing and heat treatment of local cutting tools	79			
5.4.3.1 Manufacturing process	79			
5.4.3.2 Heat treatment processes	80			
I – Quenching and tempering processes	81			
II - Nitriding	82			
III – Carburising	83			
IV - Hard chrome Coating	84			
V – Case hardening	85			
5.5 Calculations of Cutting Efficiency n	86			


Ą

CHAPTER 6: RESULTS AND DISCUSSION

6.1	1 Cutting Tools Parameters			·	:	87
	6.1.1 Effect of edge-angle efficiency	on fuel	consumption a	and cutting	3	88
	i. Fuel consumption			•	•	88
	ii. Cutting efficiency					89
•	6.1.2 Effect of edge-sharp efficiency		fuel consumpt	ion and cu		95
	i. Fuel consumption					95
	ii. Cutting efficiency	У				95
	6.1.3 Effect of cutting-ed cutting efficiency	ge shape	on fuel consu	mption an	d	100
	i. Fuel consumption					100
	ii. Cutting efficienc	y ;				100
6.2	.2 Study of the Chopping M	achine P	arameters			105
	6.2.1 Effect of cutting druenergy) and cu	_		ımption(cı	ıtting	105
	i. Fuel consumption	l				105
	ii. Cutting efficienc	y	•			106
	6.2.2 Effect of feeding dr cutting efficiency	um speed	l on fuel cons	umption a	nd .	106
	i. Fuel consumption	ı				106
	ii. Cutting efficienc	у .				107
6.3	6.3 Wear of Cutting Tools					110
	6.3.1 Wear results			-		110
	6.3.1.1 Wear of the same heat t	reatment	processes			111
	6.3.1.2 Wear of the treatment p			n different	t neat	112
	6.3.1.3 Wear of the different he	_	and local cutt ent processes		with	113
6.4	.4 Technical and Econ Manufactured Cutting		Evaluation	of The	Locally	114

CHAPTER 7: CONCLUSION AND PROPOSAL FOR FUTURE WORK

7.1 Conclusions	115
7.2 Proposal For Future Work	117
References	118
Appendices	124
Arabic Title Page And Arabic Abstract	

