

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

COMBUSTION AND HEAT TRANSFER CHARACTERISTICS IN A SEMI INDUSTRIAL FLUIDIZED BED COMBUSTOR

BIYNIE

BY

SALAH ELDIN MOHAMMAD ABDEL BAKY

M.SC Mechanical Power Engineering, Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
COMBUSTION

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

August 2000

COMBUSTION AND HEAT TRANSFER CHARACTERISTICS IN A SEMI INDUSTRIAL FLUIDIZED BED COMBUSTOR

$\underline{\mathbf{BY}}$

SALAH ELDIN MOHAMMAD ABDEL BAKY

M.SC Mechanical Power Engineering, Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
COMBUSTION

Under Supervision of

Prof. Dr. Fawzy M .El- Mahallawy

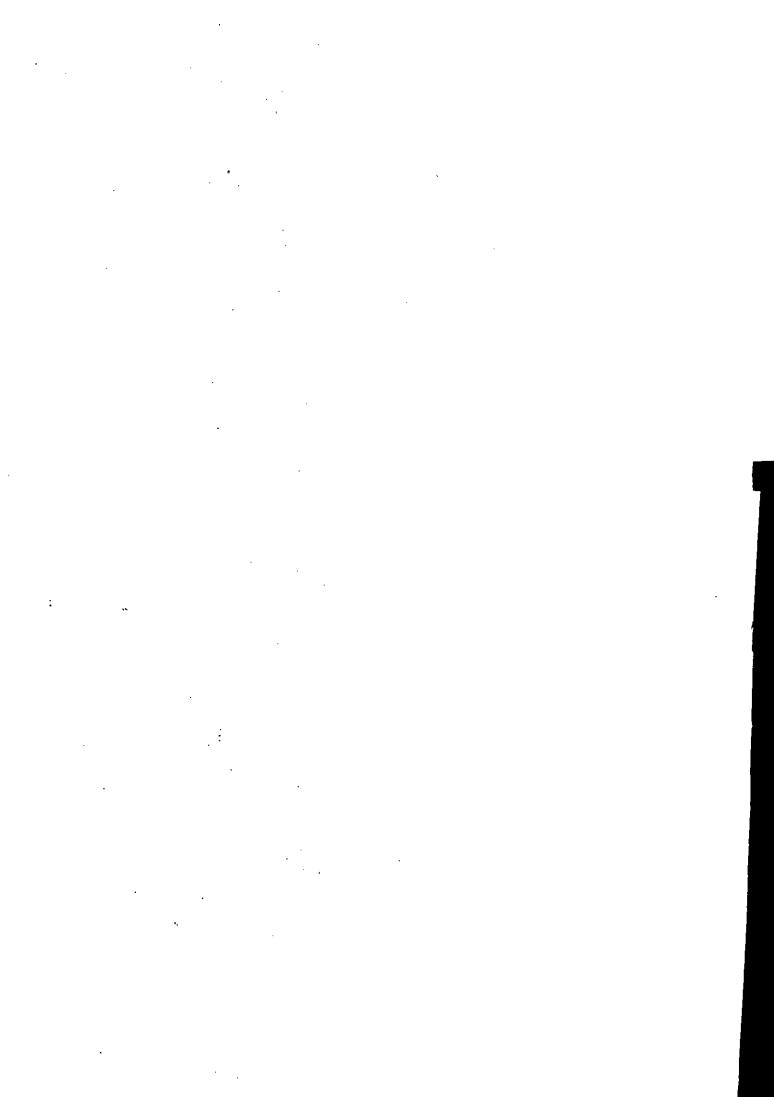
Prof. Dr. El- Sayed Mahdi Ali

Mechanical Power Engineering Dept.

Cairo University

Mechanical Power Engineering Dept.

Cairo University


Prof. Dr. Ahmad S. A., El-Asfouri

Mechanical Power Engineering Dept.

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

August 2000

COMBUSTION AND HEAT TRANSFER CHARACTERISTICS IN A SEMI INDUSTRIAL FLUIDIZED BED COMBUSTOR

<u>BY</u>

SALAH ELDIN MOHAMMAD ABDEL BAKY

M.SC Mechanical Power Engineering, Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
COMBUSTION

Approved by the Examining Committee:

Prof. Dr. El- Sayed Mahdi Ali,

Thesis Advisor

Prof. Dr. Ahmad S. A. El-Asfouri,

Thesis Advisor

Prof. Dr. Samir M. Abd El-Ghani,

Member

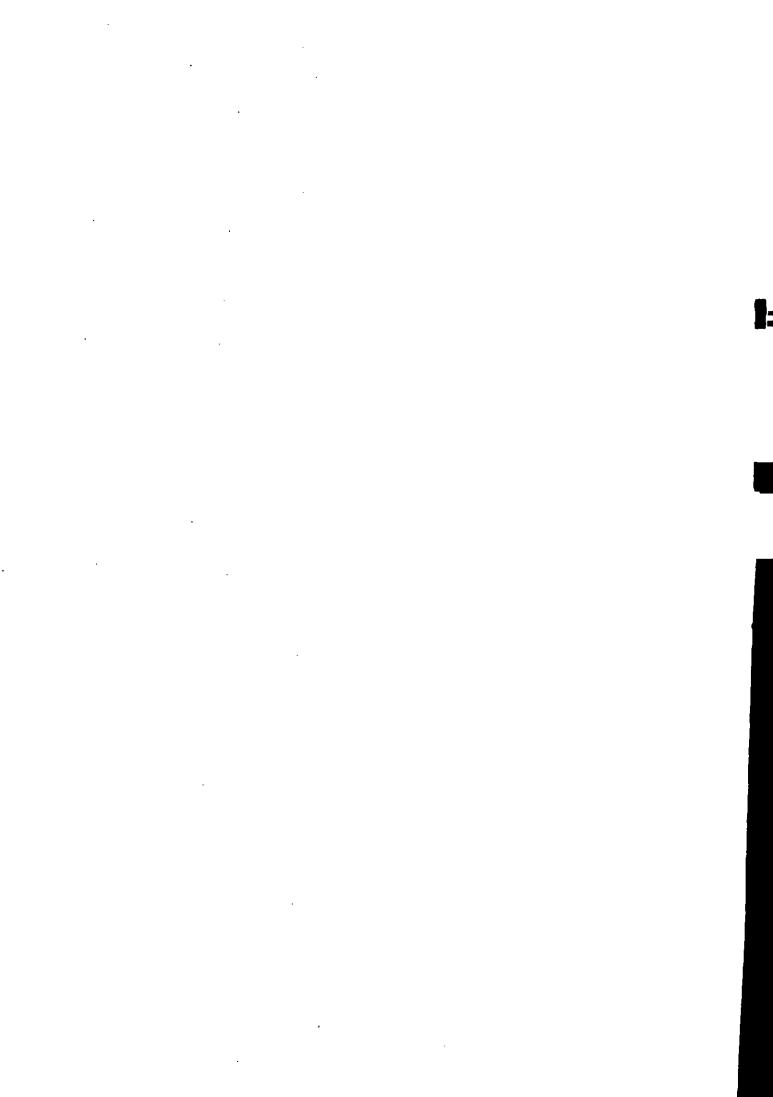

Prof. Dr. Maher Abd El- Wahab,

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

August 2000



Contents

Item	Subject	Page
	List of Tables	V
	List of Symbols and Abbreviations	VI
)	Acknowledgement	XI
	Abstract	XII
Chapter 1	Introduction	
1.1	General	1
1.2	Phenomenon of Fluidization	3
1.3	Importance of Study	4
Chapter 2	Review of Previous Works	6-15
Chapter 3	Test Rig	
3.1	Introduction	16
3.2	Fluidized Bed Combustor	16
3.2.1	Distributor Plate	16
3.2.2	Combustor Body	17
3.3	Cyclone Separator	18
3.4	Air Supply System	18
3.5	Fuel Supply System	19
3.6	Cooling Water System	19
Chapter 4	Instrumentation and Measuring Techniques	
4.1	Introduction	28
4.2	Sand Particles Measurement	28
4.3	Pressure Measurements	29
4.4	Air Mass Flow Rate Measurements	29
4.5	Species Concentration Measurements	29
4.6	Fuel Flow Rate Measurements	31
4.7	Cooling Water Flow Rate Measurements	31
4.8	Temperature Measurements	31
4.8.1	Bed and Exhaust Temperature Measurements	31
4.8.2	Cooling Water Temperature Measurements	32
4.9	Calibration of Instruments	32
4.9.1	Calibration of Thermocouples	32
4.9.2	Calibration of Liquid Fuel Flowmeter	32
4.9.3	Calibration of Gas Analyzer	32
4.10	Errors in Measurements	32
4.10.1	Errors in Air Mass Flow Rate Measurements	32

4 4 6 5		
4.10.2	Errors in Species Concentration Measurements	33
4.10.3	Errors in Fuel Mass Flow Rate Measurements	33
4.10.4	Errors in Bed Temperature Measurements	33
4.10.5	Errors in Exhaust Gas Temperature	
	Measurements	33
Chapter 5	Experimental Work and Results of Heat	
	Transfer	
5.1	Introduction	35
5.2	Experimental Procedure	35
5.3	Method of Calculation	38
5.3.1	Heat Balance	38
5.3.2	Calculation of Total Outside Heat Transfer	
	Coefficient	40
5.3.3	Calculation of Heat transfer Components to the	"
	Immersed Coil	42
5.3.3.1	Calculation of Radiative Heat Transfer	42
5.3.3.2	Calculation of Gas Convective Heat Transfer	44
5.3.3.3	Calculation of Particle Conductive Heat	44
	Transfer	44
5.4	Results of Heat Balance and Total Outside Heat	44
	Transfer Coefficient	44
5.5	Correlation for Total Outside Heat Transfer	74
	Coefficient	49
5.6	Results of Heat Transfer Components	53
5.7	Correlation for Particle Conductive Heat	23
	Transfer Coefficient	58
5.8	Discussion of the Results	59
5.8.1	Comparison between the Present Results and	39
0.0.1	Previous Results	64
	1 To vious ixesuits	04
Chapter 6	Experimental Work and Results of Combustion	
•	Characteristics	
6.1	Introduction	69
6.2	Experimental Program	69
6.3	Cold Operation	69
6.4	Start Up and Warming Operation	74
6.5	Pre-Experimental Work for Uniformity of	- •
	Combustion	74
6.6	Combustion Experiments of Pure Liquefied	
:	Petroleum Gas	75
6.6.1	Influence of Excess Air Factor on CO and C _x H _x	, -
	Concentrations in the Flue Gases	75

6.6.2	Influence of Bed Temperature on CO and C_xH_x	
	Concentrations in the Flue Gases	81
6.6.3	Influence of Excess Air Factor and Bed	
	Temperature on Nitrogen Oxides Concentration	84
	in the Flue Gases	
6.6.4	Influence of Bed Height on CO and NO _x	
0.0	Concentration in the Flue Gases	91
6.7	Combustion of Mixture of Light Oil and	91
6.7.1	Liquefied Petroleum Gas in Fluidized Bed	
	Introduction	91
6.7.2	Combustion of Mixture of and LPG and LO	93
673	Influence of Bed Height and Particle Size on the	1
6.7.3	Maximum Percent of Light Oil	96
6.7.4	Concentration of Emissions at the Maximum	
0.7.4	Percent of Light Oil	98
Chapter 7	Summary and Conclusion	
7.1	Summary	102
7.2	Conclusion	103
	References	106
Appendix	Calculation of Air Mass Flow Rate	113
Α		
Appendix	Sample of Heat Balance Calculation	114
В	-	
Appendix	Sample of Calculation of Total Outside Heat	115
C	Transfer Coefficient	
Appendix	Sample of Calculation of Heat Transfer	117
D	Components	
	Arabic Abstract	В

