Interleukin-33 in Immune Thrombocytopenia: Relation to Disease Severity and Prognosis

Thesis

Submitted for the fulfillment of the master degree in Pediatrics

By

Dr. Ahmed Said Ali Mohamed

M.B., B.CH (2009)

Under supervision of

Professor Dr. Azza Abd El-Gawad Tantawy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Professor Dr. Amira Abd El-Moneim Adly

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Professor Dr. Eman Abd El-Rahman Ismail

Consultant of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor Dr. Azza Abd El-Gawad Tantawy**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Professor Dr. Amira**Abd El-Moneim Adly, Professor of Pediatrics,
Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Prof. Dr. Eman Abdel Rahman Ismail,** Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, under whose supervision I had the honor and pleasure to proceed with work. Her constant guidance encouragement and foresight made all the difference.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ahmed Said

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Abstract	xi
Introduction	1
Aim of the Work	5
■ Immune Thrombocytopenia	6
■ Interleukin-33	51
Subjects and Methods	82
Results	93
Discussion	114
Summary	122
Conclusion	126
Recommendations	127
References	128
Arabic Summary	

List of Tables

Table No.	Title Page	No.
m-1.1. (1)	IMD I december 1 W 1' C	
Table (1):	ITP International Working Group	10
Table (2):	proposed definitions of diseaseCurrent definitions of ITP in relation to	10
1 abie (2):	historical criteria	11
Table (3):	Types of ITP classified by	11
Table (b).	pathophysiology	15
Table (4):	Bleeding symptoms are known to	10
10010 (1)	roughly correlate with platelet count at	
	diagnosis	17
Table (5):	Grading of bleeding symptoms at	
	presentation and at each subsequent	
	evaluation	18
Table (6):	Grading and scoring systems in	
	pediatric ITP	26
Table (7):	A number of other laboratory	
	parameters in the diagnostic evaluation	
	of ITP have been recommended by the	90
Table (8):	ITP IWG	29
Table (8):	Common laboratory tests obtained in the thrombocytopenic patient at	
	presentation	30
Table (9):	Differential Diagnosis of Primary	
14310 (0)1	Immune Thrombocytopenia	31
Table (10):	Comparison of high-dose IVIG and	
	intravenous RhIG for management of	
	immune thrombocytopenic purpura:	37
Table (11):	New drugs of ITP:	42
Table (12):	Treatment options for Immune	
	Thrombocytopenia	
Table (13):	Treatment options for refractory ITP	48
Table (14):	Target platelet counts during surgery in	
	adults with ITP	50

List of Cables (Cont...)

Table No.	Title	Page No.
Table (15):	Principal sources of nuclear IL-33	
	human and mouse tissues	54
Table (16):		
Table (17):	Roles of IL-33 in infectious diseases:	76
Table (18):	Roles of IL-33 in inflammatory disea	ses77
Table (19):	Roles of IL-33 in some autoimm	une
	diseases:	78
Table (20):		85
Table (21):	Descriptive clinical data of the stud	died
	patients with ITP	94
Table (22):	Therapy and outcome of studied	ITP
	patients	
Table (23):	Laboratory data of the studied	ITP
	patients	96
Table (24):	Comparison of demographic	and
	laboratory data between patients v	vith
	ITP control	97
Table (25):	Comparison between different	ITP
	stages as regards clinical variables	99
Table (26):	Comparison between different	
	stages as regards therapy and respon	
Table (27):	Comparison between different	
	stages as regards laboratory data	102
Table (28):	Comparison between active ITP	
, ,	those in remission as regards clin	
	variables	
Table (29):	Comparison between active ITP	
` ,	those in remission as regards ther	
	and response	
Table (30):	Comparison between active ITP	
ζ= - / -	those in remission as regards labora	
	data	105

List of Cables (Cont...)

Table No.	Title	Page No.
Table (31):	IL-33 levels among active ITP and th	
	in remission compared with heal	•
	controls	106
Table (32):	IL33 in relation to clin	ical
	characteristics of ITP patients	107
Table (33):	Serum IL-33 in relation to therapy	
	outcome of ITP patients	109
Table (34):	Correlation between serum IL-33	and
	clinical and laboratory data of	ITP
	patients	
Table (35):	Multivariable linear regression anal	
` ,	of factors affecting IL-33 levels in	
	patients	110
	r	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Model of relationship of contributi	
Figure (2):		13
Figure (3):	Schematic representation	
8 , ,	pathophysiology of cITP	
Figure (4):	Platelet-associated immunoglobu	
8 /	and antibodies against platelets	
Figure (5):	Roles of IVIG in innate and adapt immunity-specific mechanisms innate and adaptive immunity a described including areas of overl specifically in complement, cytoki expression, and dendritic	ive in are ap ine
	expression and activation	
Figure (6):	Structure of Romiplostim a Eltrombopag and the Cellu	nd
	Mechanisms of Action	40
Figure (7):	Therapeutic mechanisms of curre	ent
	ITP treatments	43
Figure (8):	Schema for an approach to ITP	44
Figure (9):	Using a standardized protocol we effective in reducing hospitalization and treatment use in children we	ion
	newly diagnosed thrombocytopenia	a 45
Figure (10):	Interleukin-33 genetic study	53
Figure (11):	IL-33/ST2 signaling pathway	59
Figure (12):	IL-33 release and signaling via ST	2L 60
Figure (13):	Mechanisms increasing and limiti	ng
	IL-33 activity	61

List of Figures (Cont...)

Fig. No.	Title P	age No.
Figure (14):	Schematic representation of the potential pro-inflammatory role or	
	IL-33 in normal skin and in skin	
	inflammation (atopic dermatitis and	
	psoriasis)	
Figure (15):	Role of IL-33 in rheumatoid arthritis	69
Figure (16):	IL-33 promotes vascular	•
	permeability and may be involved in	l
	the disruption of the blood-brain	
	barrier	
Figure (17):	The potential ant-inflammatory role	
	of IL-33 in adipose tissue	
E' . (10)	inflammation	
Figure (18):	C II 99 ll. '. ITD'	
Figure (19):	Serum IL-33 levels in ITP patients	
Figure (20):	compared with healthy controls Serum IL-33 levels in patients with	
rigure (20):	active ITP and those in complete	
	remission compared with healthy	
	controls.	
Figure (21):	Correlation between serum IL-33	
g (/	levels and disease duration.	
Figure (22):	Correlation between serum IL-33	
	levels and platelet count at	
	sampling.	

List of Abbreviations

Abb.	Full term
<i>Ab</i>	Antibodies
	Attention deficit hyperactivity disorder
	Absolute immature platelet fraction
	Autoimmune lymphoproliferative syndrome
	Acute Myocardial Infarction
	\dots Antinuclear antibody
	Analysis of Variance
	Anti rhesus antibodies
	Anti rhesus antibodies
Apoe	$A polipoprotein\ E$
-	Adenosine triphosphate
	Bone marrow
BMI	Body mass index
Ca	•
<i>CBC</i>	Complete blood count
	Crohn's disease
<i>CLL</i>	Chronic lymphocytic leukemia
	Cytomegalovirus
	Central nervous system
	Chronic obstructive pulmonary disease
	Complete response
	Cardiovascular
CVID	Common variable immunodeficiency
	Cyclosporin A
-	Rhesus factor
	Damage-associated molecular patterns
	$Dendritic\ cells$
<i>DIC</i>	Disseminated intravascular coagulation
	Deoxyribonucleic acid

Abb.	Full term
DSS	Dextran sodium sulfate
DTaP	Diphtheria-tetanus-acellular pertussis vaccine
DVT	Deep venous thrombosis
ELISA	Enzyme linked immunosorbent assay
<i>ER</i>	Emergency room
<i>ERK</i>	Extracellular signal-regulated kinase
F/U	Follow up
FALC	Fat-Associated Lymphoid Cluster
g	
<i>G0</i>	Gap zero period in cell cycle
<i>G1</i>	Gap 1 period in cell cycle
	Glucose-6-phosphate dehydrogenase
GI	Gastrointestinal
GTPase	Guanosine triphosphatase
<i>GYN</i>	Gynecological
H pylori	Helicobacter pylori
h	Human tissues
HCV	Hepatitis c virus
Hep C	Hepatitis C
HEV	High endothelial venules
HF	Heart failure
HIV	Human immunodeficiency virus
hr	hour
<i>Hx</i>	Skin
<i>IBD</i>	Inflammatory bowel diseases
<i>IBLS</i>	Immune thrombocytopenia Bleeding Scale
<i>ICH</i>	Intracranial hemorrhage
	Gamma immunoglobulin
<i>IL-1</i>	_
<i>IL-10</i>	Interleukin-10

Abb.	Full term
IL-18	Interleukin-18
<i>IL-1RAcP</i>	Interleukin-1 receptor accessory protein
<i>IL-1α</i>	Interleukin-1 alpha
<i>IL-1β</i>	Interleukin-1 Beta
<i>IL-33</i>	Interleukin-33
<i>IL-4</i>	Interleukin-4
<i>ILC2s</i>	Type 2 innate lymphoid cells
<i>IQR</i>	Enter quartile range
IRAK-1	Interleukin receptor associated kinase 1
<i>ITP</i>	Immune thrombocytopenia
<i>IVIg</i>	Intravenous immunoglobulin
<i>IWG</i>	International Working Group
JAK-STAT	Janus kinase/Signal Transducer and
	$Activator\ of\ Transcription$
<i>JNK</i>	JUN N-terminal kinase
<i>KC</i>	Chemokine
kg	Kilogram
L	Liter
<i>M</i>	Macrophages
<i>m</i>	Mouse tissues
<i>MAPK</i>	Mitogen-activated protein kinase
<i>MC</i>	Mast cells
<i>MD</i>	Age-related macular degeneration
mg	Milligram
ml	milliliter
<i>MMF</i>	Mycophenolate mofetil
<i>MMR</i>	Measles-mumps-rubella vaccine
mRNA	Messenger ribonucleic acid
<i>MS</i>	Multiple sclerosis

Abb.	Full term
<i>MyD88</i>	Myeloid differentiation primary-response
	protein 88
<i>N</i>	Neutrophils
NF- κB	$Nuclear\ factor$ - κB
<i>NFAT</i>	Nuclear factor of activated T cells
<i>nm</i>	N anomolar
<i>NMR</i>	Nuclear magnetic resonance
<i>NR</i>	No response
P	Phosphory lation
<i>p</i>	Probability value
<i>PCR</i>	Polymerase chain reaction
PE	Oral
Pg	Picogram
PGE2	Prostaglandin E2
PO	Per oral
PR	Partial response
<i>R</i>	Response
<i>RA</i>	Rheumatoid arthritis
<i>RAF</i>	Rapidly accelerated fibrosarcoma kinase
<i>RAS</i>	Rat sarcoma GTPase
<i>Rh</i>	Rhesus factor
<i>RhIG</i>	Rhesus immunoglobulin
<i>rhTPO</i>	Recombinant human thrombopoietin
<i>SD</i>	Standard deviation
SF	Synovial fluid
<i>SHC</i>	Src homology collagen protein
SIGIRR	Single Ig IL-1R-related molecule
<i>SLE</i>	Systemic lupus erythematosus
<i>SPSS</i>	Statistical Program for Social Science version

Abb.	Full term
sST2	Soluble receptor suppression of tumorigenicity
	2
ST2	Receptor suppression of tumorigenicity
<i>Th</i>	T-helper
<i>Th1</i>	T-helper type 1
TH17	T-helper type 17
<i>Th2</i>	T-helper type 2
<i>TLR</i>	Toll like receptor
TNBS	Trinitrobenzene sulfonic acid
TNF-α	Tumor necrosis factor alpha
<i>TPO</i>	Thrombopoiet in
TPO-RAs	Thrombopoietin receptor agonists
TRAs	Thrombopoietin receptor agonists
Tregs	T regulatory cells
<i>TSH</i>	Thyroid stimulating hormone
U	Urinary
UC	Ulcerative colitis
<i>USA</i>	United State of America
	Vascular endothelial growth factor
	White blood cell
X ²	Chi-square
μL	

Abstract

of **Background:** The pathogenesis thrombocytopenia in immune thrombocytopenia (ITP) has shifted from the traditional view of increased platelet destruction mediated by autoantibodies to more complex mechanisms where both impaired platelet production and T-cell-mediated effects play a role. Interleukin-33 (IL-33) is a newly identified cytokine of the IL-1 family. There is increasing evidence to suggest that IL-33 is a key inflammatory mediator in a complex network of immune cells and non-immune cells. IL-33 signals via its ST2 receptor and is involved in several autoimmune diseases by regulating T cell immune responses. Aim: To assess the level of IL-33 in children and adolescents with ITP and correlate it with disease severity, treatment response and outcome. **Methods:** Fifty young patients with ITP were compared with 40 age- and sexmatched healthy controls. Patients were studied stressing on bleeding manifestations, organomegaly/lymphadenopathy and therapy. Bleeding score was calculated to each patient according to the ITP Bleeding Scale (IBLS). The studied ITP Patients were further classified into 3 subgroups: "newly diagnosed ITP" (ITP within 3 months from diagnosis), "persistent ITP" (ongoing ITP between 3 and 12 months from diagnosis), and "chronic ITP" (ITP lasting more than 12 months). ITP Patients were also classified into active ITP defined as platelet count below 100 x 109/L accompanying with or without bleeding episode or complete response (CR) which was defined as any platelet count of at least 100 × 109/L and absence of bleeding. **Results:** IL-33 levels were significantly lower in ITP patients than controls (median [IQR], 150 [100 – 230] versus 210 [180-260] pg/mL; p=0.011). Levels were also lower in chronic than newly diagnosed ITP. IL-33 levels are lower among active ITP (median [IQR], 105 [85 – 120] pg/mL) compared with those in complete remission (median [IQR], 240 [200 – 250] pg/mL) and healthy controls (p<0.001) while no significant difference was found among the two latter groups (p=0.197). Patients who had splenectomy had lower IL-33 levels than non-splenectomized ones. Lower IL-33 levels were found among patients with corticosteroid-dependence and relapse (p<0.05). No significant difference as regards IL-33 between treated and un-treated patients with active ITP. IL-33 was positively correlated to platelet count at sampling (r=0.714, p<0.001). Conclusions: Alterations of IL-33 levels in pediatric patients with ITP highlight the role of T-cell immune response in the pathogenesis of ITP. It may be considered as a potential prognostic marker for the development of chronic ITP as it correlates with disease activity. Further studies investigating the role of IL-33 in the pathogenesis of ITP may provide a new therapeutic target for ITP.