DETECTION OF SOME MIGRATORY CHEMICAL COMPOUNDS FROM NATURAL DRINKING WATER BOTTLES

By

HUSSEIN FAHIM MOHAMED ABD EL-SALAM

B.Sc. Agri. Sc. (Food Technology), Ain Shams University, 1998M.Sc. Agric. Sc. (Food Science and Technology), Ain ShamsUniversity, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

DETECTION OF SOME MIGRATORY CHEMICAL COMPOUNDS FROM NATURAL DRINKING WATER BOTTLES

By

HUSSEIN FAHIM MOHAMED ABD EL-SALAM

B.Sc. Agri. Sc. (Food Technology), Ain Shams University, 1998M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2015

This thesis for Ph.D. Degree has been approve	ved by:
Dr. Samir Youssef Abdou Elsanat	•••••
Prof. of Food Science and Technology Kafrelsheikh University.	, Faculty of Agriculture,
Dr. Alaa Abd El Rashid Mohamed	•••••
Prof. of Food Science and Technology, Fac Shams University.	culty of Agriculture, Ain
Dr. Yosry Ahmed Abd-eldaim Prof. of Food Science and Technology, Face Shams University.	culty of Agriculture, Ain
Dr. Mohamed Farag Khallaf Prof. Emeritus of Food Science and Technological Agriculture, Ain Shams University.	ology, Faculty of

Date of Examination: / /

DETECTION OF SOME MIGRATORY CHEMICAL COMPOUNDS FROM NATURAL DRINKING WATER BOTTLES

By

HUSSEIN FAHIM MOHAMED ABD EL-SALAM

B.Sc. Agri. Sc. (Food Technology), Ain Shams University, 1998M.Sc. Agric. Sc. (Food Science and Technology), Ain ShamsUniversity, 2015

Under the supervision of:

Dr. Mohamed Farag Khallaf

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Yosry Ahmed Abd-eldaim

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Hemat Elsheshetawy Elsheshetawy

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Hussein Fahim Mohamed Abd EL-Salam: Detection of Some Migratory Chemical Compounds from Natural Drinking Water Bottles. Unpublished Ph.D., Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2018.

The present study was carried out to determine the migrated compounds from polyethylene terephthalate (PET) and polycarbonate (PC) to bottled drinking water (BDW) samples of different volumes (0.6, 1.5 and 19L) as well as different color (clear and blue) which available in retail shops in Egypt when the BDW was exposured to sunlight or when stored at different temperatures for 210 day and comparing to those of drinking water standards. The water samples were analyzed for various parameters. This study was also carried out the somatic mutation effect of dibutyl phthalate and dioctyl phthalate on drosophila and the effect of cytotoxicity on human cell line (colon cancer cell-liver cancer cell).

Analysis of different performs used in packaging of bottled drinking water (BDW) indicated the following results:

Twelve of heavy metals; Fe, Ni, Cu, Sb, Pb, Mn, As, Cd, Zn, Ti, BPA and total phthalates (TP) were detected in both of PET material either clear or blue one as well as the polycarbonate (PC) material.

Most of detected metals were ranged between 0.02-0.06ppm, while only two metals Zn and Cd were 0.01ppm or less in three investigated performs.

The heavy metals concentration of sample A (PET, clear, 0.6L) stored at 25°C±2/210 day were statistically differed from 90th day of storage tell the end of storage (210 day). Except Cu and Al metals which had a permissible level of such metals from the beginning of storage (at zero day).

Sample A (PET, clear, 0.6L) and B (PET, clear, 1.5L) could be easily seen that:

- Absence of BPA compound through whole storage period (210 day).
- Sb compound was detected at 30th day of storage.

Another five compounds; i.e. DEHP, DMP, DEP, DBP and DOP were detected after 90th day of storage and significantly increased till 150 day of storage then be stable till the end of storage.

Regarding to formaldehyde (FA) and acetaldehyde (AA) compounds the aforementioned trend was also detected but from zero time till the end of storage.

Changing bottle's material from PET to be PC in addition to bottle size (19L), showed the effect of such factors on migrated compounds (sample D). BPA compound was no absent but detected at the beginning of storage then had an incremental pattern till the end of storage. Only four compounds (DMP, DEP, DBP and DOP) were detected after 90 days and increased with increasing storage period. FA compound was not detected at zero time of storage but at 15th day it was dramatically increased till the end of storage. Regarding to the storage at higher temperature (50°C) sample A (PET, clear, 0.6L), contained only two compounds at zero day storage; i.e. FA and AA. After 15 day, all of other seven compounds were detected and suddenly increased with high concentrations at 90th day till the end of storage period.

In case of sample B (PET, clear, 1.5L), only three compounds did not appear at zero day. Similar trend was also detected in the same four compounds (DBP, DOP, FA and AA).

In case of sample C (PET, blue, 1.5L), presence of only four compounds was noticed (Sb, DOP, FA and AA).

It could be reported that either colour's bottle and/or filling capacity did not greatly affect.

Regarding to another packaging material (PC, 19L) at 50°C, the absence of FA compounds beside other four compounds (DMP, DEP,

DBP and DOP) at zero time storage was noticed. A continuous increase in such compounds was gradually detected till the end of storage except in case of (BPA), (FA) and (AA) that suddenly recorded higher concentrations initiated from 90th day of storage at 50°C. Regarding the effect of bottle's color on migrated compounds concentration during storage under sunlight, only four compounds were detected before storage named Sb, DOP, FA and AA, the lowest level (0.006ppb) was noticed in DOP while the moderate level was recorded in FA (0.03ppb) and Sb (0.08ppb). The highest one (0.40ppb) was recorded in case of AA. Five of detected compounds were constant after 30th day till the end of storage (210 day). Other four detected compounds; i.e. DBP, DOP, AA and DEP were consequently increased with higher levels.

The frequencies of spontaneous tumors in drosophila in both of negative control was very low, thirteen small tumors were scored among 310 flies with an average of 0.042 tumor/fly. Meanwhile, After MMC treatment of F1 larvae, the frequency of induced tumors was highly significant increased, whereas, 288 induced tumors were obtained among 230 flies with a frequency of 1.25tumor/fly. These tumors were found on all body parts and most of them were undifferentiated large tumors. In DOP (30 μ g/ml) and DBP (30 μ g/ml) treatments 158 tumors and 135 were scored, respectively.

The cytotoxicity and cell viability of di-octyl phthalate (DOP) and di-butyl phthalate (DBP) with the concentrations (0.5, 1, 5, 10 and $20\mu g/ml$) and a positive control $3\mu g/ml$ were evaluated in vitro against human liver cell lines (hepatoma cells HepG2). The viability of positive control was 62.85%, and the viability of HepG2 was reduced as the concentration increased of the tested phthalates, but the reduction was non-significant in $0.5\mu g/ml$. The significant reduction in the viability was observed in 1 and $5\mu g/ml$, moreover, highly significant in 10 and $20\mu g/ml$. The Dose inducing 50% cell growth inhibition (IC₅₀) against hepatoma cell line cells (HepG2) are presented.

Empty bottles were filled with tap water without any treatments while a second one was filled by de-chlorinated tap water (with sodium thiosulphate) to study the effect of chlorine on the physicochemical properties of such tap water at home temperature throughout seven days storage. All of investigated parameters did not affect by de-chlorination process at zero time.

After 7 days storage the anion of chlorine (Cl⁻) was minimized with 1.71 fold.

Total bacterial count (TBC) was higher in chlorinated tap water with 1.69 fold but in free chlorine tap water such parameter was increased by only 1.10 fold.

Key words: Polyethylene terephthalate (PET) bottles; bottled water; Sunlight; Phthalates; Migration; Toxicity; Carcinogenic; Genotoxic effects.

ACKNOWLEDGMENT

First of all, full praise and gratitude is to Allah Who blessed me with kind professors and colleagues and gave me the support to produce my doctorate thesis.

I wish to express my hearty appreciation, sincere gratitude and grateful acknowledgment to:

Dr. Mohamed Farag Khallaf, Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. Who has been supportive throughout and who gave me direction and encouragement to complete my submission, who inspired me through his hard work and his achievements. His advice made me realize my direction in life and this helped me to strive to achieve my goals through hard work. His constructive criticism and guidance throughout the writing of this dissertation is also acknowledged and encouraged me to pursue this study further.

Dr. Yosry Ahmed Abd El-Daim, Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. **Dr. Hemat Elsheshetawy Elsheshetawy,** Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. For their supervision, indispensable advice, constructive criticism, encouragement, valuable guidance, suggesting the subject of this work, offering facilities, follows up the work, useful comments and beneficial instructions.

My deepest gratitude is offered to my parents, my family and my brothers.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1 Polyethylene terephthalate (PET) used for drinking water bottles	7
2.1.1 The synthesis of PET	7
2.2 Studies of migrated compounds and heavy metals from PET bottles to	
bottled water	8
2.3 Studies of migrated under sunlight from PET bottles to bottled	
water	14
2.4 Study of toxicity of phthalate migration into PET-bottled	
water	20
2.5 Effect of reusing natural drinking bottles	52
3. Materials and Methods	58
3.1 Materials	58
3.1.1 Chemical reagents	58
3.1.2 Media	60
3.1.2.1 Nutrition agar	60
3.1.2.2 m-fecal coliform agar	61
3.1.2.3 m- Endo agar Les	61
3.1.2.4. Drosophila media and culture conditions	61
3.2 Treatments	61
3.2.1 Storage of (BDW) samples at different temperature	61
3.2.2 Exposure of bottled drink water samples under direct sunlight	62
3.2.3 Somatic mutation and recombination Tests (SMART) tumor body	
spots in Drosophila	62
3.2.4. Neutral red uptake assay for the estimation of cell viability/	
cytotoxicity protocol	62
3.2.5. Effect of reusing natural drinking bottles	63

3.3. METHODS	65
3.3.1 Physico-chemical analysis	65
3.3.1.1 pH value	65
3.3.1.2 Total dissolved solids (TDS)	65
3.3.1.3 Ferrous (Fe ⁺⁺)	65
3.3.1.4 Manganese	65
3.3.1.5 Aluminum	65
3.3.1.6 Barium	66
3.3.1.7 Cadmium	66
3.3.1.8 Chromium	66
3.3.1.9 Copper	66
3.3.1.10 Lead	66
3.3.1.11 Free chlorine	67
3.3.1.12 Alkalinity	67
3.3.1.13 Chloride	67
3.3.1.14 Total hardness (TH)	67
3.3.1.15 Calcium (Ca ⁺⁺)	68
3.3.1.16 Magnesium (Mg ⁺⁺)	68
3.4 Migrated compounds analysis	68
3.4.1 Formaldehyde (CH ₂ O)	68
3.4.2 Acetaldehyde	68
3.4.3 dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate	
(DBP),di-n-octyl phthalate (DOP), N, N- Diethylhydroxyl phthalate	
(DEHP) and Bisphenol A (BPA)	69
3.4.4 Antimony (Sb)	70
3.4.5 Trihalomethans (THM)	71
3.5. Smart tumor body spots	71
3.6. Human cell line	72
3.7 Microbiological analysis	73
3.7.1 The detection of total bacterial count (TBC)	73
3.7.2 The detection of fecal coliforms (FC)	74
3.7.3 The detection of total coliforms (TC)	74

4. RESULTS AND DISSECTION	76
4.1 Chemical analysis of perform water's packaging material	76
4.2. Factors affecting heavy metals concentration	77
4.2.1. Effect of storage temperature (25°C), storage period, size and type	77
of bottle on heavy metals concentration	
4.2.2. Effect of storage temperature (40°C), storage period, size and type of	
bottle on heavy metals concentration	85
4.2.3. Effect of storage temperature (50°C), storage period, size and type	89
of bottle on heavy metals concentration	
4.3. Effect of storage temperature on migration of bottle's raw	
material compounds (µg/L)	94
4.3.1 Storage at 25°C	94
4.3.2. Storage at 40°C	100
4.3.3. Storage at 50°C	106
4.4. Effect of storage under sunlight on heavy metals concentration in	
bottled drinking water	111
4.5. Migration compounds profile of water stored under sunlight (210	
day)	117
4.6. Somatic mutation and recombination Tests (SMART) tumor body	
spots in Drosophila	123
4.7. In vitro assay for cytotoxic activity human cell lines (neutral	
red assay)	125
4.8. Effect of reusing natural drinking bottle as a bottle for drinking tap	
water	127
4.8.1. Physicochemical properties of filled tap water in reused	
PET bottles	128
4.8.2. Microbiological assay of filled tap water in reused PET	
bottles	128
5. SUMMARY AND CONCLUSION	130
6. REFFERENCES	142
ARABIC SUMMARY	

LIST OF TABLES

No		Page
1.	Analysis of different preform materials (ppm) used in packaging of	
	natural drinking water	77
2.	Concentration of heavy metals at 25°C±2 for sample A (PET, clear,	
	0.6L)	79
3.	Concentration of heavy metals (ppm) at 25°C±2 for sample B (PET,	
	clear, 1.5L)	80
4.	Concentration of heavy metals (ppm) at 25°C±2 for sample C (PET,	
	Blue, 1.5L)	81
5.	Concentration of heavy metals (ppm) at 25°C±2 for sample D (PC,	
	blue, 19L)	82
6.	Concentration of heavy metals (ppm) at 40°C for sample A (PET,	
	clear, 0.6L)	83
7.	Concentration of heavy metals (ppm) at 40°C for sample B (PET,	
	clear, 1.5L)	84
8.	Concentration of heavy metals (ppm) at 40°C for sample C (PET,	
	blue, 1.5L)	87
9.	Concentration of heavy metals (ppm) at 40°C for sample D (PC,	
	blue, 19L)	88
10.	Concentration of heavy metals (ppm) at 50°C for sample A (PET, clear,	
	0.6L)	90
11.	Concentration of heavy metals (ppm) at 50°C for sample B (PET, clear,	
	1.5L)	91
12.	Concentration of heavy metals (ppm) at 50°C for sample C (PET, blue,	
	1.5L)	92
13.	Concentration of heavy metals (ppm) at 50°C for sample D (PET, blue,	
	19L)	93
14.	Concentration of migrated compounds (ppb) at 25°C±2 for sample A (PET,	
	clear, 0.6L)	96
15.	Concentration of migrated compounds (ppb) at 25°C±2 for sample B	
	(PET, clear, 1.5L)	97

16.	Concentration of migrated compounds (ppb) at 25°C±2 for sample C	
	(PET, blue, 1.5L)	98
17.	Concentration of migrated compounds (ppb) at 25°C±2 for sample D	
	(PC, blue, 19L)	99
18.	Concentration of migrated compounds (ppb) at 40°C for sample A	
	(PET, clear, 0.6L)	102
19.	Concentration of migrated compounds (ppb) at 40°C for sample B	
	(PET, clear, 1.5L)	103
20.	Concentration of migrated compounds (ppb) at 40°C for sample C	
	(PET, blue, 1.5L)	104
21.	Concentration of migrated compounds (ppb) at 40°C for sample D (PC,	
	blue, 19L)	105
22.	Concentration of migrated compounds (ppb) at 50°C for sample A	
	(PET, clear, 0.6L)	107
23.	Concentration of migrated compounds (ppb) at 50°C for sample B	
	(PET, clear, 1.5L)	108
24.	Concentration of migrated compounds (ppb) at 50°C for sample C	
	(PET, blue, 1.5L)	109
25.	Concentration of migrated compounds (ppb) at 50°C for sample D	
	(PC, blue, 19L)	110
26.	Concentration of heavy metals (ppm) under sunlight for sample A (PET,	
	clear, 0.6L)	113
27.	Concentration of heavy metals (ppm) under sunlight for sample B	
	(PET, clear, 1.5L)	114
28.	Concentration of heavy metals (ppm) under sunlight for sample C	
	(PET, blue, 1.5L)	115
29.	Concentration of heavy metals (ppm) under sunlight for sample D	
	(PC, blue, 19L)	116
30.	Concentration of migrated compounds (ppb) under sunlight for sample	
	A (PET, clear, 0.6L)	119
31.	Concentration of migrated compounds (ppb) under sunlight for sample	
	B (PET, clear, 1.5L)	120

32.	Concentration of migrated compounds (ppb) under sunlight for sample		
	C (PET, blue, 1.5L)	121	
33.	Concentration of migrated compounds (ppb) under sunlight for sample		
	D (PC, blue, 19L)	122	
34.	Frequencies of induced tumor in trans-heterozygous (wts/+) after		
	larvae feeding treatments with concentrations of DOP (di-octyl		
	phthalate) and DBP (Di-butyl phthalate) comparing with the MMC		
	as a positive control and negative control	124	
35.	The cell viability percentage and IC_{50} of liver cancer human cell		
	lines tested by DOP and DBP compared with Positive control using		
	neutral red cytotoxicity assay	125	
36.	Physicochemical properties of tap water (ppm) at room		
	temperature	128	
37.	Microbiological assay of tap water and bottle wall at room		
	temperature	129	

LIST OF FIGURES

No	
1. Diagram represents the tumor induction of spontaneous and	
induced warts epithelial tumors in +/wts flies after treatments	
with mitomycin C (MMC), DOP and DBP.	124