

CHANGES IN GANGLION CELL COMPLEX AND NERVE FIBER LAYER IN CORRELATION TO PERIMETRY CHANGES IN EARLY OPEN ANGLE GLAUCOMA

Thesis

Submitted for partial fulfillment of Master degree in ophthalmology

Presented by

Nour Adel Mabrouk

M.B., B.Ch
6th October University

Supervised by

Prof. Dr. Hoda M.Saber Naeim

Professor of ophthalmology
Faculty of Medicine, Ain Shams University

Prof. Dr. Maha Mohamed Ibrahim

Assist. Professor of ophthalmology Faculty of Medicine, Ain Shams University

Dr. Nashwa Mohamed Ezzat

Lecturer of Ophthalmology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2018

تغيرات الخلايا العقدية و الالياف العصبية و ارتباطها بتغيرات مجال الابصار في الجلوكوما المبكره

رسالة

توطئة للحصول على درجة الماجستير في طب وجراحة العيون مقدمة من

□ نور عادل مبروك/الطبيبة

بكالوريوس الطب و الجراحة جامعه ٦ اكتوبر

تحت إشراف

أد/ هدى محمد صابر نعيم

أستاذ طب وجراحة العيون كلية الطب- جامعة عين شمس

أد/ مها محمد إبراهيم

أستاذ مساعد طب وجراحة العيون كلية الطب- جامعة عين شمس

د/ نشوی محمد عزات

مدرس طب وجراحة العيون كلية الطب- جامعة عين شمس كلية الطب

جامعة عين شمس

7.11

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Hoda M.Saber Naeim**, Professor of ophthalmology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. she has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Maha Mohamed Ibrahim,** Assist. Professor of ophthalmology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr.**Nashwa Mohamed Ezzat, Lecturer of Ophthalmology, Ain

Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Subjects Page
• List of AbbreviationsI
• List of tables III
• List of FiguresIV
• Introduction1
• Aim of the Work4
Review of literature:
Chapter 1: Anatomy and physiology of aqueous
humor6
numor
Chapter 2: Anatomical changes in glaucoma 16
Chapter 3: Optical Coherence Tomograghy 25
Chapter 4: Automated Perimetery 49
• Patients And Methods75
• Results88
• Discussion105
• Summary and Conclusion109
• References
Arabic Summary

List of Abbreviations

AAO : American academy of ophthalmology

AC : Anterior chamber

ADP : Adenosine diphosphate

AIF : Acquired image frame

AL : Axial length
Asb : Apostilbs

ATP : Adenosine triphosphate

AUROC : Area under receiver operating characteristic curve

BCVA: Best corrected visual acuity

BM : Bruch's Menbrane

BMO: Bruch's Membrane Opening

CB: Ciliary body

cpRNFL : Circum-papillary retinal nerve fiber layer : Combined index of structure and function

ELM: External limiting membrane

ERM : Epiretinal membrane **FAZ** : Foveal vascular zone

FD-OCT: Fourier domain optical coherence tomography

FDT: Frequency doubling technology

FT : Full threshold strategy
GCC : Ganglion cell complex

GCIPL: Ganglion cell-inner plexiform layer

GCL : Ganglion cell layerGHT : Glaucoma hemifield testGPA : Guided progression analysis

HD-OCT: High definition optical coherence tomography

HS: Highly significant

ILM : Inner limiting membrane
 INL : Inner nuclear layer
 IOP : Intraocular pressure
 IPL : Inner plexiform layer

IS/OS: Boundary between the photoreceptor inner and outer

segments

LGB : Lateral geniculate bodyM-Cells : Magnocellular cellsMD : Mean deviation

MDB : Minimum distance band

NFL: Nerve fiber layer

NPE : Non Pigmented epithelium

NS: Non-significant

EList of Abbreviations

OAG: Open angle glaucoma

OCT : Optical coherence tomography

OLM : Ocular hypertension
OLM : Outer limiting membrane

ON : Optic nerve

ONH : Optic nerve headONL : Outer nuclear layerOPL : Outer plexiform layer

POAG: Primary open angle glaucoma

PC: Personal computer
PE: Pigmented epithelium

PR: Photoreceptors

PSD: Pattern standard deviation

pRNFL) : Peripapillary retinal nerve fiber layer

PSD: Pattern standard deviation

RGC-AC : Retinal ganglion cell–axonal complex

RGCsRNFLRetinal ganglion cells: Retinal nerve fiber layer: Retinal pigment epithelium

RPE/CH: Retinal pigment epithelium and choriocapillaris

S : Significant

SAP : Standard automated perimetry

SC : Schlemm's canalSD : Standard deviation

SD OCT: Spectral domain optical coherence tomography

SF : SITA Fast

SITA : Swedish interactive thresholding algorithm strategy

SLO : Scanning Laser ophthalmoscope

SLO/OCT: spectral domain scanning laser ophthalmoscope/ OCT

SPSS : Statistical Package for Social Science

SS :SITA Standard

SWAP : short-wavelength automated perimetryTDOCT : time domain optical coherence tomography

TM: Trabecular meshwork

VF: Visual field

VFI: Visual field index

⊠List of Table

List of Tables

Tab. No.	Subject	Page
(1)	Characteristics of study subjects.	92
(2)	Optic disc data analysis among glaucoma patients	93
	group.	
(3)	Visual field indices among groups.	95
(4)	Thickness of Macular GCC among groups.	96
(5)	Thickness of Macular RNFL among groups	97
(6)	Thickness of pRNFL among groups	98
	Correlation between Visual field indices (VFI),	99
(7)	Thickness of macular GCC and RNFL by SD-	
	OCT.	
(8)	Correlation between VFI and Thickness of	100
	pRNFL by SD-OCT.	
(9)	Correlation between total thicknesses of macular	101
	GCIPL to that of pRNFL.	
(10)	Receiver operating characteristic curve areas	102
	of macular GCC obtained by OCT.	
(11)	Receiver operating characteristic curve areas	103
	of pRNFL obtained by OCT.	
(12)	Receiver operating characteristic curve areas	104
	of visual field indices.	

€List of Figures

List of Figures

Fig. No.	Subject	Page
(1)	Physiology of aqueous humour	7
(2)	Partitions and layers of the ciliary body.	8
(3)	cross section in canal of schlemm's	11
(4)	Schematic showing possible mechanisms of ion	14
(4)	flow through the PE and NPE	
(5)	Optic nerve in healthy and glaucomatous eyes	17
(6)	Factors contributing to pathophysiology of	19
	glaucomatous neurodegeneration.	
(7)	anatomy of the macula	20
(8)	Shows the histological architecture of the fovea	22
(8)	and the macula	
(9)	Cross section at macula.	29
(10)	TD- OCT vs. SD-OCT segmentation	31
(11)	Stratus OCT imaging technique	31
(12)	TD-OCT imaging of the right optic nerve	35
(13)	TD-OCT RNFL thickness graph	36
(14)	Method for MDB determination in SD-OCT	37
(17)	images of the ONH.	
(15)	The Doppler angle between the blood flow and	39
	scanning beam.	
(16)	Double circular scanning using Doppler FD-OCT.	40
(17)	Limitations of the 3.4-mm-diameter circle scan of	42
	the TD-OCT.	
(18)	Three dimensional SD-OCT data visualization.	43
(19)	GCC thickness map as obtained by SD-OCT.	44
(20)	GCC deviation map as obtained by SD-OCT.	45
(21)	GCC significance map as obtained by SD-OCT.	45
(22)	Visual field extension.	51
(23)	Distribution of retinal nerve fiber layer.	55
(24)	Bjerrum Tangent screen.	56
(25)	Goldmann perimeter.	57
(26)	Humphrey perimeter.	58
(27)	Humphery field print out.	66
(28)	Humphrey field print out of 32 years old female	80
(20)	patient.	
(29)	SD-OCT imaging of left optic nerve of 32 years	81
	old female patient.	

∠List of Figures

Fig. No.	Subject	Page
(30)	SD-OCT glaucoma analysis –macula of left eye of 32 years old female patient.	82
(31)	SD-OCT glaucoma analysis –macula of right eye of 54 years old female patient.	84
(32)	SD-OCT imaging of right optic nerve of 54 years old female patient.	85
(33)	Humphrey field print out of 54 years old female patient.	86
(34)	Age distribution among groups.	92
(35)	Disc analysis criteria among groups.	93
(36)	Tension variation among groups.	94
(37)	Field (MD) variation among groups	95
(38)	Field (PSD) variation among groups	95
(39)	Macular GCC thickness variation among groups	96
(40)	Macular RNFL thickness variation among groups.	97
(41)	pRNFL thickness variation among groups.	98
(42)	Inversely proportional correlation between field (PSD) and macular RNFL thickness (superior).	99
(43)	Directly proportional correlation between field (MD) and pRNFL thickness (superior).	100
(44)	Directly proportional correlation between total macular GCC and pRNFL	101
(45)	ROC curve of thickness of macular GCC.	102
(46)	ROC curve of thickness of pRNFL.	103
(47)	ROC curve visual field indices.	104

Abstract

Background: Glaucoma is an optic neuropathy that is characterized by the loss of retinal ganglion cells and the retinal nerve fiber layer. There is a diversity of factors that may lead to glaucoma but the main issues in common are the effect on the retinal ganglion cells and potentially devastating visual loss.

Aim of work: The aim of the present study is to assess the macular ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (pRNFL) using OCT. This is to demonstrate the structural damage that occurs in early glaucoma patients. Also to correlate those changes with the functional changes seen in Standard Automated Perimetry (SAP).

Patients and Methods: This is a reterograde cross-sectional observational study conducted in Ain Shams University hospitals. This present study aimed at analyzing the data of 40 patients with early open angle glaucoma to the outpatient clinic of both Ain Shams University Hospitals and Memorial Institute of Ophthalmology over a year period from November 2016 to December 2017.

Results: Our study found that both GCC and pRNFL thickness are highly significant when comparing patient and control groups. Our results also showed better diagnostic capability of GCC over pRNFL to detect early glaucomatous changes. We also found that total GCIPL is the best macular parameter with AUC 0.840 while the total pRNFL AUC 0.791. Also we found a low correlation of structural damage with functional damage and this is in agreement with other studies that proved RGC dysfunction may precede axonal numerical loss in the presence of normal structures.

Conclusion: the assessment of GCC parameters plays an important role in diagnosis and monitoring of glaucoma. Our study showed that SDOCT is a useful ancillary diagnostic tool for evaluation of early macular and circumpapillary structural changes in glaucomatous eyes.

Keywords: ganglion cell complex, peripapillary retinal nerve fiber layer, pattern standard deviation, standard automated perimetry.

INTRODUCTION

Glaucoma is a neurodegenerative disease associated with progressive loss of retinal ganglion cells (RGCs) and their axons. RGC complex is defined as a set of neighboring ganglion cells in the RGC layer together with their axons forming a nerve fiber bundle in the retinal nerve fiber layer (RNFL) until their exit from the eye in the optic nerve head. The goal of glaucoma management is to slow down the rate of progressive neural loss to preserve visual function throughout the patient's life. Assessment of visual function in clinical practice is traditionally performed with Standard Automated Perimetry (SAP). Although SAP testing has been widely used for diagnosis, staging, and monitoring of the disease, it has become increasingly evident that a substantial number of RGCs may be lost before damage to SAP becomes statistically significant (Bach and Hoffmann, 2008)

Glaucomatous visual field (VF) defects include an early paracentral scotoma, which may slowly merge and form an arcuate defect that continues to the blind spot. A nasal step may be present and one hemifield more depressed than the other. The visual field defect should correspond to the RNFL loss. As clinical examination is subjective and clinician dependent, early glaucoma signs can be overlooked from time to time. Early treatment opportunities may be missed if relying primarily on a visual field defect. This is because a substantial reduction in RGC

population can occur before clinically significant visual field defect can be detected. Since the introduction of optical coherence tomography (OCT), the technology has assisted clinicians in the detection of RNFL loss associated with glaucoma. Due to advances in OCT technology, we can now acquire a 6 x 6 mm cube of data in the peripapillary region in less than 1.5 seconds. Using OCT ONH scan to analyze peripapillary retinal nerve fiber layer (pRNFL) is now a widely employed parameter for diagnosing glaucoma. (*Quigley* et al., 1990)

Studies comparing high-resolution imaging of anatomical structures with SAP have shown that OCT may detect a large number of glaucoma patients with early and/or progressive damage compared with SAP. (*Lee* et al., 2012)

Optical coherence tomography (OCT) has become a staple in noninvasive imaging of ophthalmology. This strategy provides quantitative as well as qualitative clinical measures, and also provides information about various ocular pathologies. With the use of spectral-domain OCT technology, which has a higher scanning speed and improved axial resolution compared to time-domain OCT, It is now possible to perform 3-D volumetric scans of the retina and obtain detailed retinal layer analysis in an objective and reproducible fashion. The cpRNFL thickness measurement has become a well-established and widely used biomarker in glaucoma assessment since the

introduction of OCT. In addition to its excellent glaucoma discriminating performance, cpRNFL may offer equivalent performance in glaucoma progression assessment, but this statement remains the subject of debate. As it measures the thickness along a circle close to the optic nerve head (ONH) margin, cpRNFL covers all the axons of the ganglion cell distributed in the entire retina, but it is not a direct measurement of the glaucoma insult to retinal ganglion cells (RGCs). Instead, cpRNFL is an indirect measure of the consequence of the ganglion cell body damage. (*Kerrigan* et al., 2000)

Peripapillary retinal nerve fiber layer (pRNFL) thickness varies significantly with degree of myopia, age, ethnicity, axial length (AL), and optic disc area. Consequently, the thickness measurements of particular retinal layers in the macula could offer glaucoma detection ability comparable or superior to that of pRNFL thickness in highly myopic patients. Macular thickness may theoretically reflect RGC loss better, because more than 50% of all RGCs are concentrated and multilayered in this region, and RGC bodies are 10 to 20-fold the diameter of their axons. In addition, since the macula lies along the globe's optical axis, the macula maybe less affected by globe AL than the optic disc and peripapillary structures. (*Ishikawa* et al., 2012)

So the measurement of the peri-macular ganglion cell layer has emerged as a new diagnostic parameter in glaucoma with spectral domain OCT (SDOCT). Various OCT machines now use this technique to capture the thickness of the innermost three retinal layers around the macula. These three layers, known as the macular ganglion cell complex (GCC), they are the retinal nerve fibre layer, ganglion cell layer and inner-plexiform layer. The GCC contain the axons, cell bodies and dendrites of the ganglion cells, respectively, which have been shown to be preferentially affected by glaucoma. This new parameter may assist early glaucoma detection, especially in cases where the ganglion cell loss is predominately macular rather than peripheral. (*Nakano, Hangai and Nakanishi*, 2012)