Three-Dimensional Superimposition of Cone Beam Computed Tomography Models in Follow up of Orthodontic Cases: A Comparative Study of Different Software Programs

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University, in partial fulfillment of the Requirements for the Doctor's Degree in Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology

Presented By

Sahar Mohamed Samir Morsy

B.D.S (Ain shams University) 2007 MSc (Ain shams University) 2013

Supervised by

Dr.Mary Medhat Farid

Assistant Professor of Oral Radiology and Diagnostic Sciences Faculty of Dentistry Ain Shams University

Dr. Walaa Mohamed Hamed

Assistant Professor of Oral Radiology and Diagnostic Sciences Faculty of Dentistry Ain Shams University

Dr. Noha Hussein Abbas

Lecturer of Orthodontics Faculty of Dentistry Ain Shams University

> Faculty of Dentistry Ain Shams University 2017

ACKNOWLEDGMENT

All praise and gratitude be to ALLAH with the blessings of whom the good deeds are fulfilled.

I wish to express my deep gratitude to *Dr. Mary Medhat Farid*, for her encouragement, patience, and endless support throughout the research steps.

Also, I am greatly indebted to *Dr. Walaa Hamed*, for her valuable advices and suggestions. Her helpful comments and discussions during our meetings are greatly appreciated.

Special thanks to *Dr. Noha Hussein Abbas* for her help and support in this work. Also, I would like to express my deepest appreciation to all members of *Orthodontics*, *Faculty of Dentistry*, *Ain Shams University* with special thanks to *Dr. Marwa Salah and Dr, Hesham Sharara*, for the great help in the orthodontic part of my work.

I am greatly indebted to all my colleages at the *Oral Radiology department, Faculty of Dentistry*, *Ain Shams University* for their assistance in observations and for continued help and support.

Special thanks to the staff members of the *Imaging Centers* and to *Dr. Samer Alqoussa* for his assistance with the statistical analysis.

Finally, I wish to didicate any expected success to the soul of my father and to my family members, without their support and encouragement, I would not have achieved this point.

Sahar Samir

TABLE OF CONTENTS

Title	Page
Introduction and review of literature	1
Aim of the study	33
Patients and methods	34
Case presentation	56
Results	64
Discussion	81
Summary and conclusion	97
Recommendations	99
References	100
Arabic summary	

LIST OF TABLES

Table	Title	Page
1	Example of different third party software programs	25-26-27
2	Summary of the amount of RME in canine, second premol and first molar bilaterally	ar 62
3	Total accuracy of the methods under investigation	65
4	Accuracy ranking of all methods according to Dahlberg error	or 67
5	Accuracy ranking of all methods according to Blan &Altman method of agreement	nd 69
6	Accuracy ranking of all methods according to intra-cla correlation coefficient	71
7	Inter-observer reliability between observer (1) and observ (2)	er 73
8	Inter-observer reliability between observer (1) and observ (3)	er 73
9	Inter-observer reliability between observer (2) and observ (3)	er 73
10	Qualitative software ranking by first rater	79
11	Qualitative software ranking by second rater	79
12	Qualitative software ranking by third rater	79
13	Intra-class correlation coefficient for qualitative inter-rat agreement	er 79
14	Qualitative ranking according to inter rater agreement	80
15	Sum up of qualitative and quantitative ranking	80

LIST OF FIGURES

Figur	e Title	Page	
1	Superimposition on intraosseous tantalum implants of maxilla and mandible at six time intervals	14	
2	Stiener superimposition method on S-N line with registration on Sella		
3	Björk superimposition method. Mandibular superimposition method registered on the inner cortical structure of the inferior border of the symphysis, mandibular canal and the developing molar crypts	17	
4	Color coded distance maps showing treatment changes using voxel based superimposition with Maxilim software. The green color indicates that the superimposed model is in front of the original model and red color indicates the opposite. Each color graduation is 1 mm. (A) models registered on the anterior cranial base. (B) Same models registered on the left zygomatic arch	19	
5	SBR on MIP, sagittal and coronal images. Note: the double contour on the sagittal section at area of mental foramen indicating the amount of change	20	
6	Showing X, Y, Z orthogonal planes	21	
7	PPR of 2 CBCT digital models (pre and post treatment). The centers of lingual and mental foramina were used as reference points using Rapidform 2006 software	22	

	Voxel based superimposition using On Demand software for	
	1 year follow up of orthognathic surgery of an adult patient. A:	
	before fusion B: 2D cuts after fusion, arrows showing total	
8	overlap at cranial base. The mandible shows double contour	23
	indicating change following surgery. C: Color coded 3D	
	distance map. Black area represents 0.5 mm change, blue/red	
	less than 0.5 mm change and green represents no change	
9	Identification of cephalometric landmarks using Dolphin	28
9	imaging software	20
10	Linear measurements using InVivoDental (Anatomage)	29
11	Cephalometric landmarks on 3D reconstructed LCR using	20
11	OnDemand3D	30
	Calculation of the orbital volume using Mimics software. A:	
	The orbital volume was limited by cutting off the optic nerve	
	at the entrance of the optic canal and by cutting off the	
12	pterygopalatine fossa and the superior and inferior orbital	21
12	fissure. Arrowhead: superior orbital fissure. (B, C) Orbital	31
	cavity. D: Good visibility orbit to pterygo-palatine fossa	
	(arrow) and superior orbital fissure (arrowhead). E: 3D orbital	
	bony volume with adjacent bone ring (gray)	
13	Hyrax appliance used for RME	35
14	Tracing of Porion point. The slice locator 2D cuts was used to	20
14	locate the upper margin of external auditory meatus,	38

	accordingly it will be located on the 3D volume to draw the		
	Frankfort horizontal plane		
	Tracing of Nasion point. The slice locator 2D cuts was used		
15	to locate the frontonasal suture, accordingly it will be located	38	
	on the 3D volume to draw the mid sagittal plane		
	Measuring the distance at mid buccal surface of left 2 nd		
16	premolar at the level of anterior CEJ from the midsagittal	39	
10	plane. The 3D image was cropped coronally to the level of 2 nd	39	
	premolar		
	The coordinate system formed of Frankfort horizontal and		
	mid sagittal planes perpendicular to each other, and the		
17	distance of points of assessment from midsagittal plane. The	39	
	3D reconstructed image was hidden to show the		
	measurements		
	Nasion (the fronto-nasal suture) and Orbitale (most inferior		
18	point of infraorbital margin) points were identified for	41	
	Dolphin side by side superimposition method		
	Point based superimposition was verified in the three		
19	orthogonal planes so that all cranial base is totally fused and	42	
	the change is confined to the maxilla		
	A: The distance change on the axial cut at the level of CEJ of		
20	anterior teeth after BPR of Dolphin imaging software. The	42	
20	distance was measured from mid buccal point of T to mid	42	
	buccal point of T1 parallel to their long axis. B: diagrammatic		

change of canine measured directly from mid buccal surfaces of canine at T and canine at T1 passing with the long axis	
of canine at T and canine at T1 passing with the long axis	
Overlay superimposition using Dolphin 3D. Preview images	
were dragged over each other to perform SBR	
Verification of superimposition on all orthogonal cuts so that	
the cranial base is totally overlapped and the change is 44	
confined to maxilla	
A: The distance change on the axial cut at the level of CEJ of	
anterior teeth after SBR of Dolphin 3D. The distance was	
measured from mid buccal point of T to mid buccal point of	
T1 parallel to their long axis. B: diagrammatic representation 44	
of superimposed T-T1 model. The distance change of canine	
measured directly from mid buccal surfaces of canine at T and	
canine at T1 passing with the long axis.	
Point based registration using InVivo Dental software 46	
Manual adjustment after point based registration 46	
A: Distance change on the axial cut at the level of CEJ of	
anterior teeth using PBR of InVivo dental (note the total	
overlap at the cranial base area). The distance was measured 47	
from mid buccal point of T to mid buccal point of T1 parallel	
to their long axis. B: diagrammatic representation of	
superimposed T-T1 model. The distance change of canine	

	measured directly from mid buccal surfaces of canine at T and	
	canine at T1 passing with the long axis	
	Volume based registration using InVivo Dental software. A	
	rectangular 2D area was selected at each image to represent	
27	the fixed anterior cranial base on which the superimposition	48
	was automatically performed	
	A: The distance change on the axial cut at the level of CEJ of	
	anterior teeth using VBR of InVivo dental. The distance was	
	measured from mid buccal point of T to mid buccal point of	
28	T1 parallel to their long axis. B: diagrammatic representation	48
	of superimposed T-T1 model. The distance change of canine	
	measured directly from mid buccal surfaces of canine at T and	
	canine at T1 passing with the long axis	
	Voxel based registration using OnDemand 3D software. 1st	
29	row is primary volume, 2 nd row is secondary volume and 3 rd	50
	row is the fused volume	
	A: The distance change on the axial cut at the level of CEJ of	
	anterior teeth using VBR of OnDemand 3D. The distance was	
	measured from mid buccal point of T to mid buccal point of	
20	T1 parallel to their long axis (note the fused volume at the	50
30	cranial base) B: diagrammatic representation of superimposed	50
	T-T1 model. The distance change of canine measured directly	
	from mid buccal surfaces of canine at T and canine at T1	
	passing with the long axis	

31	Point based registration of Mimics software. The 1 st DICOM image was loaded then the 2 nd DICOM was imported	
32	Tracing of right porion on mimics image registration screen. The point was selected on each cut to correspond with the superior margin of external auditory meatus	
33	Basion point on mimics image registration screen. The point was selected on each cut to correspond with the most anterior point of foramen magnum	53
34	A: The distance change on the axial cut at the level of CEJ of anterior teeth using PBR of Mimics software (note the total overlap at the unchanged area). The distance was measured from mid buccal point of T to mid buccal point of T1 parallel to their long axis. B: diagrammatic representation of superimposed T-T1 model. The distance change of canine measured directly from mid buccal surfaces of canine at T and canine at T1 passing with the long axis	53
35	A: Frontal and profile extra-oral photographs showing bilateral posterior crossbite. B: Intra-oral photographs C: Hyrax appliance for RME	57
36	The 3D traced measurements on T image. Difference between mid-buccal point of each point to the mid-sagittal plane at level of CEJ of anterior teeth	58

37	The 3D traced measurements on T1 image. Difference between mid-buccal point of each point to the mid-sagittal	58
	plane at level of CEJ of anterior teeth	
	The difference between mid-buccal point of T to mid buccal	
38	point of T1 on the axial superimposed cut at the level of	59
	cervical line using Dolphin 3D side by side method	
	The difference between mid-buccal point of T to mid buccal	
39	point of T1 on the axial superimposed cut at the level of	59
	cervical line using Dolphin 3D overlay method	
	The difference between mid-buccal point of T to mid buccal	
40	point of T1 on the axial superimposed cut at the level of	60
	cervical line using InVivo Dental Point registration	
	The difference between mid-buccal point of T to mid buccal	
41	point of T1 on the axial superimposed cut at the level of	60
	cervical line using InVivo Dental Volume Registration	
	The difference between mid-buccal point of T to mid buccal	
42	point of T1 on the axial superimposed cut at the level of	61
	cervical line using OnDemand 3D	
	The difference between mid-buccal point of T to mid buccal	
43	point of T1 on the axial superimposed cut at the level of	61
	cervical line using Mimics	
	Amount of RME at the different superimposed models. A:	
44	Dolphin side by side PBR. B: Dolphin overlay SBR. C:	62
44	InVivo point PBR D: InVivo Volume VBR. E: OnDemand	63
	VBR F: Mimics PBR	

45	Bar chart of the accuracy ranking of all methods according to relative Dahlberg error 67	
46	Bar char of accuracy ranking of all methods according to Bland &Altman method of agreement	69
47	Bar chart of accuracy ranking of all methods according to intra-class correlation coefficient	71

LIST OF ABRREVIATIONS

Abbrev.	Full Term
2D	Two dimensional
3D	Three dimensional
ABO	American board of orthodontics
Ba	Basion
CBCT	Cone Beam Computed Tomography
DICOM	Digital imaging and communication in
	medicine
FOV	Field of view
FPD	Flat panel detector
ICC	Intra-class correlation coefficient
ICP	Iterative closest point
IID	Image intensifier detector
ISO	International organization for
	standardization
LCR	Lateral cephalometric radiograph
LOA	Limit of agreement
MI	Mutual information
MIP	Maximum intensity projection
MPR	Multiplanar reformatted
	_

MSCT	Multislice computed tomography
N	Nasion
0	Orbitale
P	Porion
PBR	Point based registration
RDE	Relative Dahlberg error
RME	Rapid Maxillary Expansion
S	Sella
SBR	Surface based registration
SD	Standard deviation
T1	Pre-treatment image
T2	Post-treatment image
VBR	Voxel based registration
VOI	Volume of interest
VV	Voxel value