

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer Engineering and Systems

A Secure Architecture for Vehicular Cloud Computing

A Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering (Computer Engineering and Systems)

by

Marvy Badr Monir Mansour

Master of Science in Electrical Engineering
(Computer Engineering and Systems)
Faculty of Engineering, Arab Academy for Science,
Technology and Maritime Transport, 2013

Supervised By

Prof. Hoda Korashy Mohamed

Professor at Computer Engineering and Systems, Ain Shams University

Prof. Sherif Ali Mohamed Hammad

Professor at Computer Engineering and Systems, Ain Shams University

Dr. Cherif Ramzi Salama

Lecturer at Computer Engineering and Systems, Ain Shams University

Cairo -(2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems

A Secure Architecture for Vehicular Cloud Computing

by

Marvy Badr Monir Mansour

Master of Science in Electrical Engineering

(Computer Engineering and Systems)

Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. Ahmed Fahmy Amin Mahrous	
Computer and Systems, Arab Academy for	•••••
Science, Technology and Maritime Transport	
Prof. Mohamed Watheq Ali El-Kharashi	
Computer and Systems, Ain Shams University	•••••
Prof. Hoda Korashy Mohamed	
Computer and Systems, Ain Shams University	•••••
Prof. Sherif Ali Mohamed Hammad	
Computer and Systems, Ain Shams University	

Date: 14 July 2018

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Marvy Badr Monir	Mansour
	Signature

Date: 14 July 2018

Researcher Data

Name : Marvy Badr Monir Mansour

Date of birth : 7th of February 1985

Place of birth : Cairo, Egypt

Last academic degree : Master of Science

Field of specialization : Electrical Engineering

University issued the degree : Arab Academy for Science,

Technology and Maritime Transport

Date of issued degree : 2013

Current job : Assistant Lecturer

Thesis Summary

Vehicular Ad-hoc Networks (VANETs) are a kind of networks that have two main types of communication V2V and V2I, which are vehicle—to—vehicle and vehicle—to—infrastructure respectively. VANET is one of the promising areas for the creation of Intelligent Transportation System (ITS) to provide both safety and comfort for vehicle drivers. Recently, various technologies have evolved for VANETs to accommodate a wide range of driver needs. One of these technologies is known as Vehicular Cloud Computing (VCC), which is designed to enable drivers to access a wide variety of Cloud services while driving. VCC is an emerging technology that vehicle drivers use for different applications, such as Location-Based Service (LBS) applications that require from the vehicles to send frequent location updates to LBS Providers for real-time services.

Thus, the specific nature of VCC brings up the need to address necessary security and privacy issues for VCC to be integrated into the social life. Moreover, VCC imposes some security and privacy challenges for drivers, such as: sender location privacy and identity anonymity. Also, some VCC attacks emerge while using Location-Based Services (LBSs) offered by semi-trusted LBS Providers, such as: location tracking and user

identification of drivers that breach users' privacy. At the time when this thesis was written, the applications both safety-related and convenience-related were either under development or in initial stages since VANET system and VCC as a whole are yet to be implemented. Therefore, this thesis is dedicated to provide a secure architecture for a user that mitigates the existing VCC attacks while using LBS applications located in a Cloud.

In this thesis, we propose a secure and privacy-preserving robust system for Vehicular Cloud Computing environment in order to solve the previous problems. Our proposed system offers a wide variety of state-of-the-art security services needed by drivers when using LBS applications, while avoiding any conflicts between user requirements of security and privacy. Our system consists of four main phases: Vehicle Bootstrapping Phase, Vehicle and LBS Provider Certificate Provisioning Phase, Vehicle and LBS Provider Certificate Revocation Phase, and finally the LBS Request in Vehicular Cloud Computing Phase. In our system, we use a novel idea that allows a Road-Side Unit (RSU) to form cluster containing all vehicles within its coverage range, and to act as the Cluster Head of cluster formed. Also, we introduce to use RSU Clouds and Roadside Unit-to-Roadside Unit (R2R) communication in the RSU Cloud, which are needed for LBS applications to guarantee service delivery for vehicles. Also, we include in our protocol a novel Reward System that is used to reward or penalize vehicles while using LBS applications, and to determine Trust Level of an LBS Provider. In addition, our system includes a novel Certificate Revocation mechanism for both vehicles and LBS Providers, where unconditional anonymity is preserved for reporter.

Thesis Summary

Finally, we present a detailed security and privacy analysis for our proposed system, and show that it is capable of maintaining the security and privacy of drivers while offering a strong protection against a wide range of VCC attacks. Also, we show that our proposed system provides protection against both internal and external system attacks. In addition, we provide some calculations that show that our system provides low storage, communication and computation overhead as compared to other existing approaches. Furthermore, we demonstrate the applicability of our system of providing security and privacy to vehicles in real-life scenarios while thwarting well-known VCC attacks, and so breaking the zero-sum game between providing the needed Quality-of-Service (QoS) and preserving the driver's security and privacy.

Keywords: Certificate Provisioning in VANET, Certificate Revocation in VANET, LBS Request in Vehicular Cloud Computing, Location Privacy, Security and Privacy in VANET, Security and Privacy Techniques in Vehicular Cloud Computing, Vehicle Tracking.

Acknowledgement

First of all, I thank **GOD** for helping me throughout this thesis.

It is my pleasure to thank my great supervisors who made this dissertation possible. First, I am deeply grateful for **Prof. Hoda Korashy**, whose direct supervision, precious advices and encouragement has got this work started and accomplished in its full potential. Also, I own my great gratitude to **Prof. Sherif Hammad**, whose valuable suggestions, guidance and support throughout this work have brought this thesis to a high standard. In addition, I am very thankful to **Dr. Cherif Salama** for his thoughtful ideas and insightful comments during this thesis that have helped in achieving this work. It is worth to acknowledge that working with my supervisors was a pleasure where I have benefited from their great experience.

Besides that, I am very grateful to my **parents** for their continuous encouragement and support. They gave me precious suggestions for my life and study, and taught me to achieve excellence throughout my study.

Thesis Summary	iv
Acknowledgement	vii
Table of Contents	viii
List of Figures	xiii
List of Tables	xxvi
List of Abbreviations	xxviii
1. Chapter ONE: Introduction	1
1.1 Introduction to Wireless Ad-hoc N	
1.2 Introduction to VANET	5
1.2.1 Overview of VANET	8
1.2.2 VANET Characteristics	10
1.2.3 VANET Applications	12
1.2.4 Overview of VANET Non-safet	y Applications15
1.2.4.1 Non-safety Applications Ana	alysis Framework16
1.2.4.2 Examples of Non-safety App	plications18
1.2.5 VANET Challenges	24
1.3 Problem Definition	24
1.4 Objectives of Thesis	26
1.5 Contributions of Thesis	28
1.6 Outline of Thesis	30

2. Chap	pter TWO: VANET Security and Privacy	34
2.1	Threat Model	36
2.1.	.1 Types of Adversaries	37
2.2	Security and Privacy Requirements	39
2.2.	.1 Security Requirements	41
2.2.	.2 Privacy Requirements	44
2.2.	.3 Other System Requirements	46
2.3	VANET Attacks and Attackers	48
2.3.	.1 Types of Attacks	48
2.3.	.2 Types of Attackers	54
2.4	Public Key Infrastructure	56
2.4.	.1 Key Distribution	57
2.4.	.2 Trusted Parties	58
2.5	Security-related VANET Projects	59
2.5.	.1 IEEE 1609 standard for WAVE	60
2.5.	.2 Vehicle Safety Communications Project	60
2.5.	.3 PRESERVE Project	61
2.5.	.4 Other Projects	62
3. Chap	pter THREE: Approaches for VANET Security and Privac	y 65
3.1	Approaches versus Security and Privacy Requirements	68
3.1.	.1 Message Authentication and Privacy	68
3.	.1.1.1 Group Signature Scheme	69
3.	.1.1.2 Pseudonymous Authentication	71
3.1.	2 Message Authentication and Data Integrity	75
3.1.	Anonymity and Unlinkability	75
3.1.	.4 Accountability, Traceability and Non-Repudiation	76
3.1.	.5 Misbehavior Detection and Revocation	78

3.2 Se	chemes based on Group Signatures	82
3.2.1	GSIS: Secure Vehicular Communications with Privacy	
	Preserving	83
3.2.2	Efficient and Robust Pseudonymous Authentication in VANET	85
3.2.3	Balanced Trustworthiness, Safety, and Privacy in V2V	88
3.2.4	Threshold Anonymous Announcement in VANET	91
3.3 Se	chemes based on Pseudonyms	93
3.3.1	Securing Vehicular Ad-hoc Networks	94
3.3.2	Efficient and Spontaneous Privacy-Preserving Protocol	98
3.3.3	Security Framework with Strong Non-Repudiation and Privacy	100
3.4 O	ther Approaches	103
3.4.1	Balancing Auditability and Privacy in Vehicular Networks	103
3.4.2	Trustworthy Privacy-Preserving Car-Generated Announcements	106
3.5 St	ummary	106
	er FOUR: A Secure Privacy-Preserving RSU-Aided Sy	
4.1 P	reliminaries	113
4.1.1	Motivation of Proposed System	115
4.1.2	RSU Cluster Formation	116
4.2 O	utline of Phases of Proposed System	118
4.3 D	escription of Roles of Entities of Proposed System	121
4.4 D	escription of Phases of Proposed System	130
4.4.1	Phase I: Vehicle Bootstrapping Phase	132

4.4.2	Phase II: Vehicle and LBS Provider Certificate Provisi Phase	
4.4.2.	1 Vehicle Certificate Provisioning Process	134
4.4.2.	2 LBS Provider Certificate Provisioning Process	141
4.4.2.	3 Pseudonym Certificate Renewal	146
4.4.3	Phase III: Vehicle and LBS Provider Certificate Revoc	
	Phase	147
4.4.3.	1 Vehicle Certificate Revocation Process	148
4.4.3.	2 LBS Provider Certificate Revocation Process	154
4.4.4	Phase IV: LBS Request in Vehicular Cloud Computing Phase	-
4.4.4.	1 RSU Clouds	171
4.5 Se	curity and Privacy Analysis of Proposed System	171
4.5.1	Security and Privacy Analysis of Proposed System Entities	172
4.5.2	Security and Privacy Considerations of Proposed Syste	em.175
4.5.3	Security Services versus System Attacks	176
5. Chapter	FIVE: Performance Evaluation and Results	184
5.1 St	ate-of-the-art Cryptosystems	186
5.2 RS	SA-based Cryptosystem	188
5.3 Cı	ryptographic Overhead of Proposed System	190
5.3.1	Cryptographic Overhead of Phase II for Vehicle and RSU	191
5.3.2	Cryptographic Overhead of Phase III for Vehicle and RSU	197
5.3.3	Cryptographic Overhead of Phase IV for Vehicle and RSU	202

5.3.4	4	Cryptographic Overhead of all System Phases	208
5.3	3.4.1	Cryptographic Overhead for a Vehicle	208
5.3	3.4.2	Cryptographic Overhead for a RSU	214
5.3.5	5	Average Cryptographic Overhead of all System Phases.	221
5.3	3.5.1	Average Cryptographic Overhead for Vehicle and RSU	221
5.3	3.5.2	Average Cryptographic Overhead for a Vehicle	228
5.3	3.5.3	Average Cryptographic Overhead for a RSU	234
		tionship between Overheads of Proposed Protocol orithms	241
5.5		entage Decrease of Overhead using L.S.	245
5.6	Ove	rhead Comparison with other Approaches	249
5.6.	1	Overhead Comparison for a Vehicle	250
5.6	6.1.1	Percentage Decrease of Vehicle Overhead using Proposition System.	
5.6.2	.2	Overhead Comparison for a RSU	267
5.6	6.2.1	Percentage Decrease of RSU Overhead using Propose System	
5.7 Appro		nrity and Privacy Comparison with other es.276	
6. Chap	oter S	IX: Conclusion	279
6.1	Sum	mary and Outcomes	280
6.2	Futu	ıre Work	283
Referen	res		285

List of Figures

Fig. 1.1. Hierarchy of Wireless Networks4
Fig. 1.2. Illustration of a VANET Model6
Fig. 1.3. Illustration of VANET Communication6
Fig. 1.4. Illustration of a Modern Smart Vehicle
Fig. 1.5. Categories of VANET Applications
Fig. 1.6. Examples of VANET Applications Scenarios14
Fig. 1.7. Non-safety VANET Applications Analysis Framework17
Fig. 2.1. Interrelations of security, privacy, and other system requirements. The "red-solid" are the "constraining" requirements and the "green-dotted" are the "supporting" requirements
Fig. 2.2. A forgery attack where A2 and A3 are colluding attackers that disseminate fake information in order to free the way of attacker A1 by affecting other vehicles' (V) decisions

List of Figures

Fig. 2.3. Illustration of Denial-of-Service Attack
Fig. 2.4. Illustration of a typical Sybil Attack54
Fig. 2.5. Illustration of a typical Selfish Driver Attitude55
Fig. 3.1. Vehicle <i>A</i> updates its pseudonym for each new message sent72
Fig. 3.2. A <i>Mix-Zone:</i> two vehicles met at the same place, known as an intersection, at time t_0
Fig. 3.3. A group of vehicles, <i>k-users</i> , forming a <i>k-anonymous</i> region74
Fig. 4.1. Illustration of VANET Communications: V2Vand V2I, R2R, RSU Cloud and RSU Cluster
Fig. 4.2. Illustration of Proposed System Entities
Fig. 4.3. Functions of Misbehaviour Authority (MA) in Vehicle Certificate Revocation Process
Fig. 4.4. Example of Phases II, III and IV of Proposed System131
Fig.4.5. Illustration of the System Entities involved in the Vehicle Certificate Provisioning Process
Fig. 4.6. Illustration of the Vehicle Certificate Provisioning Process135