

Ain Shams University
Faculty of Women for
Arts, Science and Education
Zoology Department

The Protective Effect of *Moringa oleifera* Extract and Hepatoprotective Remedy Against Sodium Valproate-induced Liver Toxicity in Adult Rats.

A thesis

Submitted in Partial Fulfillment of the Requirements for the **Degree of Ph.D. of Science in physiology**By

Halima Mohamed Ibrahim Mostafa

(B.Sc., M.Sc.) Assistant Researcher, Physiology Department, National Organization for Drug Control and Research

Board of Scientific Supervision

Prof. Dr. Samiha M. Abd El Dayem

Professor of Physiology-Zoology Department-Faculty of Women for Arts, Science and Education.

Dr. Fatma M. Fouda

Assist. Professor of Physiology- Zoology Department-Faculty of Women for Arts, Science and Education.

Prof. Dr. Ahmed M. Shehata

Professor of Physiology-Physiology department, National Organization for Drug Control and Research.

Dr. Fawkya A. Al-hodairy

Assist. Professor of Physiology-Physiology department, National Organization for Drug Control and Research.

Zoology Department- Faculty of Women for Arts, Science and Education Ain Shams University

(2018)

Ain Shams University Faculty of Women for Arts, Science and Education Zoology Department

Approval sheet

Name: Halima Mohamed Ibrahim Mostafa

Scientific Degree: Ph.D. (Physiology)

Title: The Protective Effect of *Moringa oleifera* Extract and Hepatoprotective Remedy Against Sodium Valproate-induced Liver Toxicity in Adult Rats.

Board of Scientific Supervision

Prof. Dr. Samiha M. Abd El Dayem

Professor of Physiology-Zoology Department-Faculty of Women for Arts, Science and Education.

Dr. Fatma M. Fouda

Assistant Professor of Physiology-Zoology Department- Faculty of Women for Arts, Science and Education.

Prof. Dr. Ahmed M. Shehata

Professor of Physiology-physiology department, National Organization for Drug Control and Research.

Dr. Fawkya A. Al-hodairy

Assistant Professor of Physiology-Physiology department, National Organization for Drug Control and Research.

Qualification

Name: Halima Mohamed Ibrahim Mostafa

Scientific Degree: M.Sc. (Physiology)

Department: Zoology Department

Faculty: Faculty of Women for Arts, Science and

Education

University: Ain Shams University

Graduation Year: 2014

قَالَ رَبِّ اشْرَحْ لِي صَدْرِي وَيَسِّرْ لِي أَمْرِي

وَ احْلُلْ عُقْدَةً مِّن لِّسَانِي يَقْقَهُوا قُولِي

سورة طه(25-28)

صَيْكَ قِالله العَظيمر

Acknowledgement

First and foremost thanks are due to Allah

I wish to express my deepest gratitude and sincere appreciation to Prof. Dr. Samiha Mohamed Abdel- Dayem, Professor of Physiology, Zoology Departement -Faculty of Women for Arts, Science and Education,

Ain Shams University, for suggesting and planning the point of research, her instructive outstanding supervision, sincere encouragement, continuous guidance, reading the manuscript and support that helped me to overcome all research problems.

I am heartily thankful to my supervisor Prof. Dr. Ahmed Mohamed Shehata Professor of Physiology, National Organization for Drug Control and Research (NODCAR). I am greatly indebted to him for suggesting and planning the point of research, energetic help, excellent advice, reading and criticizing the manuscript and valuable supervision. To him I shall be forever grateful.

I would like to express my sincere gratitude to **Prof. Dr. Fatma Mokhtar Fouda** Assistant Professor of Physiology, Zoology Department-Faculty of Women for Arts, Science and Education, Ain Shams University for suggesting and planning the point of research, her supervision, continuous guidance, helpful advice, kind assistance, and for constructive criticism that have resulted in the accomplishment of the present thesis.

I wish to thank Prof. Dr. Fawkya Abdel Aleem El-Hodairy Assistant professor of physiology, National Organization for Drug Control and Research (NODCAR). For kindly supervising the present work, her continuous guidance, helpful advice, continuous encouragement and support me during my study.

I would like to express my deep gratitude to all staff members of Physiology department, National Organization for Drug Control and Research for their help and support. And, to my family, thank you for your love.

Abstract

Purpose: This work has been carried out to investigate possible ameliorative effect of *Moringa oleifera* leaves extract against sodium valproate (VPA) induced-liver injury in male albino rats. Mepacure (MEPA) was used as reference hepato-protective drug.

Methods: Male albino rats were divided into five groups of 24 rats in each group. Group1 (Control): untreated animals served as control. Group 2 (VPA): hepatic toxicity was induced by the administration of VPA (500mg/kg b.wt.) orally once daily for 6 weeks. Group 3 (VPA+MO): rats received VPA along with *Moringa oleifera* leaves extract (500 mg/kg b.wt.) orally once daily for 6 weeks. Group 4(VPA + MEPA): rats received VPA along with mepacure (21.6mg/ kg b.wt.) orally once daily for 6 weeks. Group 5 (VPA+MO+MEPA): rats received VPA along with *Moringa* and mepacure orally once daily for 6 weeks.

There was significant (P<0.05) increase in **Results:** marker enzymes, of liver levels serum aminotransferase (ALT), aminotransferase aspartate (AST), and gama glutamyltransferase (GGT) in the VPA treated group compared to the normal control. Also, an elevation in the pro-inflammatory cytokines (TNF- α) level in VPA treated group. While, serum total protein levels significantly decreased. Sodium valproate induced of increased of liver oxidative stress in terms malondialdhyde (MDA), nitric oxide (NO) and oxidized

glutathione (GSSG) contents and decreased glutathione (GSH) content. Furthermore, VPA provoked apoptotic response through increasing gene expression of proapoptotic (Bax) and decreasing gene expression of antiapoptotic (Bcl2) in liver tissue. Moringa attenuated the serum activities of liver markers enzymes of ALT, AST and GGT. Also, it displayed significant (P<0.05) reduction in GSSG, MDA and NO level and caused a significant increase in total protein and GSH contents when statistically compared with VPA treated group. MO administration suppressed the elevation in the gene expression of pro- apoptotic Bax and significant increase in the anti-apoptotic gene Bcl2, restored the normal redox status and inhibited the inflammatory factor. Also, Histopathological examination confirmed ameliorative effect for the Moringa leaves extract and Mepacure drug against VPA induced liver injury.

Conclusion: This study showed that oral administration of moringa leaves extract and nutraceutical drug reduced serum enzymes biomarker activites, restored normal level of liver redox status, reduced inflammation and regulated liver gene expression in sodium valproate-induced liver injury in adult rats.

Key words: Liver toxicity, sodium valproate, *Moringa oleifera*, oxidative stress, gene expression, rats.

List of Contents

INTRODUCTION	1
AIM OF WORK	4
REVIEW OF LITERATURE	5
The Liver	5
Functions of the liver	8
Hepatic drug metabolism	10
Drug induced liver injury (DILI)	11
Sodium valproate (VPA)	12
Liver metabolism of valproic acid	20
Oxidative stress in liver injury	23
Valproate and oxidative stress	26
Inflammatory cytokines (Tumor Necrosis Factor-α	29
$(TNF-\alpha)$	
The gene	31
Gene expression	33
Expression of Bcl2 and Bax genes	34
Medicinal Plants	38
Moringa oleifera	40
Chemical constituents of moringa	39
The medicinal and pharmacological effects of	51
Moringa oleifera	
Mepacure drug	59
Silymarin	60
Dimethyl dimethoxy biphenyl dicarboxylate (DDB)	65
MATERIALS AND METHODS	70
1- Materials	70
1.1. Animals and experimental conditions	70
1.2. Moringa oleifera leaves	71
1.3. Mepacure capsules	71
1.4. Sodium valproate	72
1.5. Experimental design	72
1.6. Sample collection	73
2-Methods	74
2.1. Biochemical analysis	74

2.1.1- Determination of serum alanine transaminase	74
activity (ALT)	
2.1.2- Determination of serum aspartate transaminase	75
activity (AST)	
2.1.3- Determination of serum Gamma-Glutamyl	76
transferase (γ-GT)	
2.1.4 - Determination of Serum Total Protein Level	77
2.1.5- Determination of Pro-inflammatory cytokines	77
$(TNF-\alpha)$	
2.2. Oxidative stress and antioxidant parameters	79
2.2.1- Determination of hepatic GSH and GSSG by	79
HPLC	
2.2.2-Determination of hepatic malondialdhyde (MDA	80
2.2.3- Determination of hepatic Nitric oxide (NO)	82
2.3. Determination of Gene expression (Bax and Bcl2)	83
2.3.1- RNA Extraction	83
2.3.2-cDNA synthesis	85
2.4. Histopathological examination	90
2.5. Statistical analysis	91
RESULTS	92
DISCUSSION	146
SUMMARY AND CONCLUSION	179
REFERENCES	186

List of Tables

Table (1):Nutritive value of M. oleifera	
T 11 (2) D1 (1 1 1 1 1 C	49
Table (2): Phytochemical constituents isolated from	
Moringa oleifera Lam	50
Table (3): The cDNA master mix	30
	86
Table (4): Primer sequence of the studied genes	
	88
Table (5): Reagents and volumes added in master mix for Q-PCR	
	89
Table (6): Running condition for RT-PCR.	
	89
Table (7): Effect of Moringa oleifera (MO, 500mg/kg) and	
/or Mepacure (MEPA, 21.6mg/ kg) on serum level of ALT activity (U/L) in Sodium Valproate (VPA, 500mg/kg)	
treated rats once daily for 6 weeks.	
dedica fais once daily for o weeks.	94
Table (8): Effect of Moringa oleifera (MO, 500mg/kg) and	
/or Mepacure (MEPA, 21.6mg/ kg) on serum level of AST	
activity(U/L) in Sodium Valproate (VPA, 500mg/kg)-	
treated rats once daily for 6 weeks.	07
Table (9): Effect of Moringa oleifera (MO, 500mg/kg) and	97
/or Mepacure (MEPA, 21.6mg/ kg) on serum level of	
GGT activity (U/L) in Sodium Valproate (VPA,	
500mg/kg)- treated rats once daily for 6 weeks.	
<i>y</i>	100
Table (10): Effect of Moringa oleifera (MO, 500mg/kg),	
and /or Mepacure (MEPA, 21.6mg/ kg) on serum level of	
Total Protein (g/dl) in Sodium Valproate (VPA,	
500mg/kg)- treated rats once daily for 6 weeks.	103
Table (11): Effect of Moringa oleifera (MO, 500mg/kg),	105
Tuoto (11). Effect of Morninga official (Mo, 500mg/kg),	100