

Acknowledgement

Firstly, thanks for ALLAH the GREATEST.

I would like to express my sincere gratitude to Dr. Mohamed Salem Al-Baz Professor of Cardiology in Al-Azhar University, for his great support, encouragement and guidance.

I am also strongly grateful for my teacher Dr. Mohammed Shalaby Professor of Cardiology and the head of cardiovascular unit in Research Institute of Ophthalmology for his support and encouragement, I learnt alot from him not only in medicine but in all aspects of my life.

The great care and advice of **Dr. Ahmed Khalil** Assistant Professor of Ophthalmology in Research Institute of Ophthalmology has been a great value for guiding me through my work. Also his important notes has left a valuable impression.

I must thank **Dr. Mohammed Hesham** Assistant Professor of Cardiology in Al-Azhar University, for being the ignition light for this whole work by suggesting the idea of this work.

I must deeply thank **Dr. Kamal Marghani**, Lecturer of Cardiology in Al-Azhar University for his sincere care and important advice that he has given all through this work. He was always there for me whenever I needed him.

I must thank Dr. Mona Abdel-Rahman, Assistant Professor of Clinical Pathology in Research Institute of Ophthalmology for her effort in all laboratory assessment which has been done in this work.

I am also grateful for **Dr. Hany Negm**, Professor of Cardiology in Research Institute of Ophthalmology for his generous support.

I should give my dear colleague and brother **Dr.Motaz Fayez** a special gratitude for his outstanding help and experience in field of Doppler ultrasound. And of course, this work was not going to be done efficiently without my dearest brothers and sisters in my Research Unit.

Contents

	Page
List of content	I
List of figures	II
List of tables	VI
List of abbreviations	VIII
Introduction and Aim of Work	1
Review of literature	5-54
I. Cardiovascular Risk Factors	5
II. Left Ventricular functions and Echocardiographic methods	
of assessment	16
III. Endothelial Dysfunction	26
IV. Anatomy Of The Common Carotid Artery	35
V. Primary open angle glaucoma	38
VI. Glaucoma and cardiovascular diseases and risk factors	44
Patients and methods	55
Results	61
Master Table	75
Cases	77
Discussion	82
Study limitations	91
Conclusion	92
Recommendation	93
Summary	94
References	
Arabic summary	127

List of Figures

Figures Number	Name of Figure	Page
Fig. (1)	Pathophysiology of Obesity and Cardiomyopathy	11
Fig. (2)	Measurement of left ventricular end-diastolic diameter (EDD) and end-systolic diameter (ESD) from M-mode, guided by parasternal short-axis image	18
Fig. (3)	2-D measurements for volume calculations using the biplane method of discs (modified Simpson's rule)	20
Fig. (4)	Area length method	20
Fig. (5)	Schematic diagram of the changes in mitral inflow in response to the transmitral pressure gradient	23
Fig. (6)	Pulmonary vein velocities with predominant diastolic wave (D) and lower systolic wave (S) indicating increased left atrial pressure	24
Fig.(7)	showing the location of endothelial cells	27
Fig. (8)	Endothelial cells, which form the tunica intima, encircle an erythrocyte	27
Fig. (9)	Shows the central role of endothelial function in the	29

Figures Number	Name of Figure	Page
	causation and progression of atherosclerosis	
Fig. (10)	Production of nitric oxide (NO) by endothelial cells.	31
Fig. (11)	Showing baseline brachial artery and post occlusion brachial artery	34
Fig. (12)	Showing representative flow-mediated response of brachial artery forearm occlusion	34
Fig. (13)	Schematic of the proximal aorta and its branches	35
Fig. (14)	The internal carotid arteries arise from common carotid arteries	35
Fig. (15)	Segments of ICA	37
Fig. (16)	Circulation of the aqueous humor.	41
Fig. (17)	The diagram shows statistical values of age and gender	62
Fig. (18)	The diagram shows statistical values of cardiovascular risk factors	63
Fig. (19)	The diagram shows statistical values of SBP and DBP	64
Fig. (20)	The diagram shows statistical values of Wt, HT, BMI and WC	65
Fig. (21)	The diagram shows statistical values of FBS, 2HPP and HG1c	66
Fig. (22)	The diagram shows statistical values of lipid profile	67
Fig. (23)	The diagram shows statistical distribution of ischemic and conduction changes of ECG	68
Fig. (24)	The diagram shows statistical values of systolic and	70

Figures Number	Name of Figure	Page
	diastolic function parameters of LV by conventional echocardiography	
Fig. (25)	The diagram shows statistical values of normal and abnormal regional wall motion at rest detected by conventional echocardiography	70
Fig. (26)	The diagram shows statistical distribution of regional wall motion abnormalities in glaucoma patients with hypokinesia represents 30% and akinesia represents 10% of glaucoma cases	70
Fig. (27)	The diagram shows statistical values of Rt ≪ Carotid artery duplex parameters (PSV, EDV, IMT)	71
Fig. (28)	The diagram shows statistical values of presence of RT ICA PLQ	72
Fig. (29)	The diagram shows statistical values of presence of Left ICA PLQ	72
Fig. (30)	The diagram shows statistical values of percentage of RT & LT ICA stenosis	73
Fig. (31)	The diagram shows statistical values of brachial artery FMD % as a test for endothelial dysfunction	74
Fig. (32)	ECG strip showing Q-waves in anteroseptal wall	77
Fig. (33)	M-mode in parasternal long axis showing dilated LA	77
Fig. (34)	M-mode in parasternal short axis showing systolic dysfunction	77
Fig. (35)	Pulsed Doppler on mitral inflow showing diastolic dysfunction grade I	78
Fig. (36)	Colour Doppler on LT ICA Showing plaque in LT ICA	78

Figures Number	Name of Figure	Page
Fig. (37)	Colour and pulsed Doppler on RT ICA showing RT ICA stenosis	78
Fig. (38)	B-mode on CCA showing increase in carotid IMT	79
Fig. (39)	M-mode on brachial artery showing BR A at base line	79
Fig. (40)	M-mode on brachial artery showing BR A post occlusion	79
Fig. (41)	ECG strip showing normal ECG	80
Fig. (42)	M-mode in parasternal long axis showing border line Left Atrium diameter	80
Fig. (43)	M-mode in parasternal short axis showing normal systolic function	80
Fig. (44)	Pulsed Doppler on mitral inflow showing normal diastolic function	80
Fig. (45)	Colour and pulsed Doppler on LT ICA showing PSV and EDV of LT ICA	81
Fig. (46)	B-mode on RT CCA showing normal RT carotid IMT	81
Fig. (47)	M-mode on brachial artery showing BR A at base line	81
Fig. (48)	M-mode on brachial artery showing BR A post occlusion	81

List of Tables

Table number	Table name	Page
Table (1)	Classification of obesity according to BMI	56
Table (2)	Comparison between the studied groups as regard age and gender.	62
Table (3)	Comparison between the studied groups as regard prevalence of cardiovascular risk factors	63
Table (4)	Comparison between the studied groups as regard hypertension	64
Table (5)	Comparison between the studied groups as regard obesity parameters	65
Table (6)	Comparison between the studied groups as regard blood tests for Diabetes mellitus	66
Table (7)	Comparison between the studied groups as regard lipid profile parameters	67
Table (8)	Comparison between the studied groups as regard renal functions	68
Table (9)	Comparison between the studied groups as regard ECG changes (ischemic and conductive)	68
Table (10)	Comparison between the studied groups as regard Echocardiography findings	69
Table (11)	Comparison between the studied groups as regard Carotid artery duplex parameters	71
Table (12)	Comparison between the studied groups as regard presence of Internal Carotid artery plaques on both RT and LT sides	72

Table number	Table name	Page
Table (13)	Comparison between the studied groups as regard percentage of ICA stenosis	73
Table (14)	Comparison between the studied groups as regard Brachial artery flow medited dilation (FMD) as a test for endothelial dysfunction	74

LIST OF ABBREVIATION

11B-HSD2	11B.hydroxysteroid dehdrogenase
2D	Two dimensional
2НРР	Two hours post prandial
A2C	Apical two-chamber
A4C	Apical four-chamber
ABI	Ankle brachial index
ACS	Acute coronary syndrome
AHA/NHLBI	American heart association/national heart ,lung and blood institute
AIDS	Acquired immunodeficiency syndrome
ANG II	Angiotensin II
AOAG	Adult onset open angle glaucoma
AR	Atrial reversal
ВС	Before Christ
BH4	tetrahydrobiopterin
BMI	Body mass index
Br A	Brachial artery
BSA	Body surface area
CAD	Coronary artery disease
CCA	Common carotid artery
CEP	Cholesterol education program
CRF	Chronic renal failure
CRP	C-Reactive protein
CVD	Cardiovascular disease
DD	Diastolic dysfunction

DM	Diabetes mellitus
DPP	Diastolic perfusion Pressure
DT	Deceleration time
ECA	External carotid artery
	•
ECG	Electrocardiography
EDD	End diastolic diameter
EDV	End diastolic volume
EDV	End diastolic velocity
EF	Ejection fraction
eNOS	endothelial nitric oxide synthase
EPCs	Endothelial progenitor cells
ESD	End systolic diameter
ESRD	End stage renal disease
ESV	End systolic volume
ET-1	Endothelin -1
FBS	Fasting blood sugar
FMD	Flow mediated dilation
FS	Fractional shortening
GON	Glocomatous optic neuropathy
HDL-c	High density lipoprotein cholesterol
HIV	Human immunodeficiency virus
HTG	Hypertension glaucoma
ICA	Internal carotid artery
ICAM-1	Intercellular adhesion molecule-1
IHD	Ischemic heart disease
IMT	Intima media thickness
IOP	Intra ocular pressure
IVRT	Intraventricular relaxion time
LA	Left atrium

LALES	Los Angeles Latino Eye Study
LAP	Left atrial pressure
LDL-c	Low density lipoprotein cholesterol
LP (a)	Lipoprotein (a)
LV	Left ventricle
MI	Myocardial infarction
MRI	Magnetic resonance imaging
NADPH	Nicotinamide adenine dinucleotide phosphate
NAHNES	National health and nutrition examination survey
NO	Nitric Oxide
NTG	Normal tension glaucoma
ОНТ	Ocular hypertension
PAD	Peripheral arterial disease
PCWP	Pulmonary capillary wedge pressure
POAG	Primary open angle glaucoma
PP	Perfusion pressure
PSV	Peak systolic velocity
PV	Propagation velocity
PWV	Pulse wave velocity
ROS	Reactive Oxygen Spicies
TGs	Triglycerides
VCAM-1	Vascular adhesion molecule-1
VEGF	Vascular endothelial growth factor
VLDL-c	Very low density lipoprotein cholesterol
VOP	venous occlusion plethysmography
WC	Waist circumference
WHR	Waist to hip ratio

Introduction

Researchers are increasingly realizing the close relationships between systemic cardiovascular disease and a number of eye diseases. Cardiovascular disease and certain eye diseases share risk factors, and some local eye diseases can be markers for systemic disease (*Taylor and Lightman*, 2003).

Recent studies have found that major eye diseases, such as agerelated macular degeneration, retinopathy and glaucoma, are triggered by the same systemic factors that cause cardiovascular disease (CVD). In fact, many of these ocular diseases can be red flags, signaling the need for a cardiovascular examination in a patient not yet diagnosed with CVD (*Nader*, 2006).

Primary open-angle glaucoma (POAG) is one of the most prevalent causes of irreversible blindness and is considered as a group of ocular diseases characterized by progressive thinning of the neuroretinal rim of the optic nerve head and loss of the retinal nerve fiber layer (*Kuvin et al.*, 2001).

The cause of primary open angle glaucoma is still unclear today, Mechanical and vascular causes have been proposed, the mechanical theory suggests that elevated intraocular pressure (IOP) is the most important risk factor for developing glaucomatous optic neuropathy (GON). The vascular theory considers glaucomatous optic neuropathy (GON) a consequence of insufficient ocular blood supply due to vascular dysregulation (*Resch et al.*, 2009).