THE INFLUENCE OF GALL MIDGES RHOPALOMYIA SPP. ON THE ANATOMICAL AND PHYTOCHEMICAL PROFILES OF THEIR HOST PLANTS IN SAINT KATHERINE PROTECTORATE

Submitted By Marina Rogah Nabih Samaan

B.Sc. of Science Faculty of Science, Ain Shams University, 2010

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2019

APPROVAL SHEET

THE INFLUENCE OF GALL MIDGES RHOPALOMYIA SPP. ON THE ANATOMICAL AND PHYTOCHEMICAL PROFILES OF THEIR HOST PLANTS IN SAINT KATHERINE PROTECTORATE

Submitted By Marina Rogah Nabih Samaan

B.Sc. of Science Faculty of Science, Ain Shams University, 2010

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences
Department of Environmental Basic Sciences
This Thesis Towards a Doctor of Philosophy Degree in
Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Ali Ahmed Younis

Prof. of Entomology Faculty of Science Cairo University

2-Prof. Dr. Mohamed Nabeh Al-Shorbagy

Prof. of Plant Eco-Physiology Faculty of Science Tanta University

3-Prof. Dr. Hala Abdel Hamid Mohamed Kassem

Prof. of Entomology, Head of Environmental Basic Sciences Department – Institute of Environmental Studies & Research Ain Shams University

4-Prof. Dr. Amal Ahmed Morsy

Prof. of Plant Eco-Physiology Faculty of Science Ain Sham University

THE INFLUENCE OF GALL MIDGES RHOPALOMYIA SPP. ON THE ANATOMICAL AND PHYTOCHEMICAL PROFILES OF THEIR HOST PLANTS IN SAINT KATHERINE PROTECTORATE

Submitted By

Marina Rogah Nabih Samaan

B.Sc. of Science Faculty of Science, Ain Shams University, 2010

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Hala Abdel Hamid Mohamed Kassem

Prof. of Entomology, Head of Environmental Basic Sciences Department – Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Amal Ahmed Morsy

Prof. of plant Eco-physiology Faculty of Science Ain Shams University

2019

Acknowledgement

Thanks to Allah

I would like to express my deep gratitude and appreciation to *Prof. Hala Abdel Hamid Kassem*, Professor of Entomology, Head of Environmental Basic Sciences Departement, Institute of Environmental Studies and Research, Ain Shams University. She has been kind enough to provide critical advice and guidance throughout the investigation, which provided the foundations of this study.

My sincere thanks are due to *Prof. Dr. Amal Ahmed Morsy*, Professor of Plant Eco-Physiology, Faculty of Science, Ain Shams University for supervision, continuous encouragement, generous help in all respects during this investigation and during the experimental work.

I am also grateful to my family for their fruitful assistance and their constant encouragement.

Sincere thanks are also due to faculty members, colleagues and staff of the Institute of Environmental Studies and Research, Ain Shams University.

Abstract

St. Katherine protectorate (SKP) is one of the richest spots of floral diversity in the Middle East up to date. Seriphidium herba-album, Tanacetum sinaicum are important medicinal plants belonging to family Asteraceae; covering large areas within SKP wadies and mountains. Pterocephalus sanctus, is a rare endemic plant belonging to family Dipsacacae, was recorded only in SKP. These plants are suffering from number of biotic stresses including plant galls (tumors) induced by the gall midge Rhopalomyia sp. Permanent slides of galled and non-galled tissues were made in order to assess the anatomical-induced effects in the host plants. Crude aqueous and ethanolic extracts of both galled and non-galled tissues in the three studied plants were prepared in order to assess the phytochemical-induced effects in the plants. Induction of a nutritive tissue surrounded by a storage tissue and newly developed vascular tissue connecting gall tissues with the stem were formed in the three plants. Formation of neo-vascularization within the gall tissue was a key feature within T. sinaicum and P. sanctus galls. Induction of protective tissue was characteristic to S. herba-album galls. Phytochemical assay showed that the gall midges mainly induced metabolites to ensure its food, development and protection. Galls were rich in bioactive phytochemicals such as phenolic compounds, alkaloids, rare sugars, polyols, terpenes, steroids and organometallic compounds. Despite sharing common anatomical features, galls induced in plants were morphologically and chemically different. It was suggested that the galls were induced by different Rhopalomyia species. More studies are needed to accurately identify the gall inducer to the species level and to identify the unknown compounds extracted from these important medicinal plants and their galls. Studies are also needed to identify how

insects overcome plant defensive phytochemicals in order to initiate the galls.

Key words: Plant galls, St. Katherine Protectorate; *Tanacetum sinaicum*; *Seriphidium herba-album*; *Pterocephalus sanctus*: *Rhopalomyia sp.*; Plant histology, Insect-plant interaction.

Contents

ubject	Page
Abstract	1
Introduction	3
Literature Review	6
1. Flora of Saint Katherine Protectorate (SKP)	6
2. Plant galls	7
3. Insect-induced galls	8
4. Insects-induced effects on host plants	9
4.1 Anatomical induced effects	10
4.1.1 Nutritive tissues induction	10
4.1.2 Protective tissues induction	12
4.1.3 Vascular tissues induction	13
4.2 Nutritional-induced effects (primary metabolites induction)	14
4.3 Phytochemical-induced effects (Secondary metabolites	
induction)	16
5. The gall midge <i>Rhopalomyia Sp</i> . (Diptera: Cecidomyiidae)	20
5.1 Galls of Seriphidium herba-album	22
5.2 Galls of Tanacetum sinaicum	23
5.3 Galls of Pterocephalus sanctus	23
6. Phytochemical analysis of <i>S. herba-album</i>	23
7. Phytochemical analysis of <i>T. sinaicum</i>	24
8. Phytochemical analysis of <i>P. sanctus</i>	25
Materials and Methods	27
1.Sampling sites	27
2. Plant material	29
2.1 Seriphidium herba-album (Family: Asteraceae)	29
2.2 Tanacetum sinaicum (Family: Asteraceae)	29
2.3 Pterocephalus sanctus(Family: Dipsacacae)	30
3. Micromorphological analysis of the studied plants	30
5. Phytochemical analysis of the studied plants	31
4.1 Sample preparation for phytochemical analysis	31
4.2 Derivatization to improve the separation process	31
4.3 Gas chromatography–mass spectrometry (GC-MS) analysis	32

4.4 Identification of components	33
Results	34
1. Morphology of plant galls	34
2. Micromorphological-induced effects of Rhopalomyia sp. in	
host plants	36
3. Phytochemical-induced effects of <i>Rhopalomyia</i> sp. in host	
plants	42
3.1 Primary metabolites induction by <i>Rhopalomyia</i> sp. in host	
plants 3.1.1 Carbohydrate content in the three studied plants	49
3.1.1 Carbohydrate content in the three studied plants	49
3.1.1.1 Carbohydrate content within normal and galled	
tissues of S. herba-album	49
3.1.1.2 Carbohydrate content within normal and galled	
tissues of T. sinaicum	52
3.1.1.3 Carbohydrate content within normal and galled	
tissues of P. sanctus	54
3.1.2 Fatty acid and fatty alcohol content in the three studied	
plants	58
3.1.2.1 Fatty acid and fatty alcohol content within normal	
and galled tissues of S. herba-album	58
3.1.2.2 Fatty acid and fatty alcohol content within normal	
and galled tissues of T. sinaicum	59
3.1.2.3 Fatty acid and fatty alcohol content within normal	
and galled tissues of P. sanctus	61
3.1.3 Acid content in the three studied plants	62
3.1.3.1 Acid content within normal and galled tissues of	
S. herba-album	62
3.1.3.2 Acid content within normal and galled tissues of	
T. sinaicum	63
3.1.3.3 Acid content within normal and galled tissues of	
P. sanctus	64
3.1.4 Alcohol content in the three studied plants	65
3.1.4.1 Alcohol content within normal and galled tissues	
of S. herba-album	65

3.1.4.2 Alcohol content within normal and galled tissues of	<i>-</i> -
T. sinaicum	65
3.1.4.3 Alcohols content within normal and galled tissues	
of <i>P. sanctus</i>	66
	67
3.1.5.1 Amino acid content within normal and galled	
tissues of S. herba-album	67
3.1.5.2 Amino acid content within normal and galled	
tissues of T. sinaicum	67
3.1.5.3 Amino acid content within normal and galled	
tissues of P. sanctus	68
3.2 Secondary metabolites induction in the host plants	69
3.2.1 Phenolic content in the three studied plants	69
3.2.1.1 Phenolic content within normal and galled tissues	
of S. herba-album	69
3.2.1.2 Phenolic content within normal and galled tissues	
of T. sinaicum	71
3.2.1.3 Phenolic content within normal and galled tissues	
of P. sanctus	73
3.2.2 Terpene content in the three studied plants	74
3.2.2.1 Terpene content within normal and galled tissues	
of S. herba-album	74
3.2.2.2 Terpene content within normal and galled tissues	
of T. sinaicum	76
3.2.2.3 Terpene content within normal and galled tissues	
of P. sanctus.	77
3.2.3 Alkaloid content in the three studied plants	78
3.2.3.1 Alkaloid content within normal and galled tissues	
of S. herba-album	78
3.2.3.2 Alkaloid content within normal and galled tissues	
of T. sinaicum	81
of T. sinaicum	
of P. sanctus	85
3.2.4 Organometallic content in the three studied plants	87
3.2.4.1 Organometallic content within normal and galled	
tissues of S. herba-album	87

3.2.4.2 Organometallic content within normal and galled	
tissues of T. sinaicum	89
3.2.4.3 Organometallic content within normal and galled	
tissues of P. sanctus	90
3.2.5 Amine content in the three studied plants	91
3.2.5.1 Amine content within normal and galled tissues of	
S. herba-album	91
3.2.5.2 Amine content within normal and galled tissues of	
T. sinaicum	91
3.2.5.3 Amine content within normal and galled tissues of	
P. sanctus	92
3.2.6 Steroid content in the three studied plant	93
3.2.6.1 Steroid content within normal and galled tissues	
of S. herba-album	93
3.2.6.2 Steroid content within normal and galled tissues	70
S S	94
of T. sinaicum	
of P. sanctus	95
3.2.7 Sulfur-containing compounds in the three studied plant	96
3.2.8 Triazines content in the three studied plant	98
3.2.9 Benzopyrans in the three studied plant	99
3.2.10 Vitamin contents in the three studied plant	99
3.2.11 Xylenes, beta-lactans and alkanes content in the three	400
studied plant.	100
3.2.12 Galactoarabinan, lactone, quinone and hydrazine	101
content in the three studied plant	101
plant	102
Discussion	104
1. Morphology of plant galls	104
2. Micromorphological-induced effects of <i>Rhopalomyia</i> sp. in	
host plants	105
3. Phytochemical-induced effect of <i>Rhopalomyia</i> sp. in host	
plants	108
3.1 Primary metabolite induction in host plants	108
3.1.1 Carbohydrate content	108
3.1.2 Fatty acid and fatty alcohol content	111
3.1.3 Acid content	113

3.1.4 Amino acid content	114
3.2 Secondary metabolite induction in the host plants	115
3.2.1 Phenolic content	115
3.2.2 Terpene content	121
3.2.3 Alkaloid content	122
3.2.4 Organometallic content	126
3.2.5 Amine content	128
3.2.6 Steroid content	129
3.2.7 Sulfur-containing compounds	131
3.2.8 Triazine content	131
3.2.9 Benzopyran content	132
3.2.10 Vitamin content	132
3.2.11 Xylenes, beta-lactans and alkanes content	133
3.2.12 Hydrazine contents within normal and galled tissues of	
T. sinaicum	133
T. sinaicum	
of T. sinaicum	134
Conclusions and Recommendations	136
Summary	138
References	144
Appendices	I

List of Tables

Table Title Page	ge
Table 1 Studied sites within St. Katherine Protectorate	27
Table 2 Carbohydrate content in both aqueous and ethanolic	
extracts of S. Herba-albumstems, leaves and galls	50
Table 3 Carbohydrates content in both aqueous and ethanolic	
extracts of <i>T. sinaicum</i> stems, leaves and galls	52
Table 4 Carbohydrates content in both aqueous and ethanolic	
extracts of <i>P. sanctus</i> stems, leaves and galls	55
Table 5 Fatty acid and fatty alcohol content in both aqueous and	
ethanolic extracts of <i>S. herba-album</i> stems, leaves and galls	58
Table 6 Fatty acid content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls	60
Table 7 Fatty acid and fatty alcohol content in both aqueous and	
ethanolic extracts of <i>P. sanctus</i> stems, leaves and galls	61
Table 8 Acid content in both aqueous and ethanolic extracts of <i>S</i> .	
herba-album stems, leaves and galls	62
Table 9 Acid content in both aqueous and ethanolic extracts of	
T. sinaicum stems, leaves and galls	63
Table 10 Acid content in both aqueous and ethanolic extracts of	
P. sanctus stems, leaves and galls	64
Table 11 Alcohol content in both aqueous and ethanolic extracts	
of S. herba-album stems, leaves and galls	65
Table 12 Alcohol content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls.	66
Table 13 Alcohol content in both aqueous and ethanolic extracts	
of P. sanctus stems, leaves and galls	66
Table 14 Amino acid content in both aqueous and ethanolic	
extracts of S. herba-album stems, leaves and galls	67
Table 15 Amino acid content in both aqueous and ethanolic	
extracts of <i>T. sinaicum</i> stems, leaves and galls	68
Table 16 Amino acid content in both aqueous and ethanolic	
extracts of <i>P. sanctus</i> stems, leaves and galls	68
Table 17 Phenolic content in both aqueous and ethanolic extracts	
of S. herba-album stems, leaves and galls	69
Table 18 Phenolic content identified in both aqueous and	
ethanolic extracts of <i>T. sinaicum</i> stems, leaves and galls	71
Table 19 Phenolic content identified in both aqueous and	
ethanolic extracts of <i>P. sanctus</i> stems, leaves and galls	73

Table 20 Terpene content in both aqueous and ethanolic extracts	
of S. Herba-Album stems, leaves and galls	75
Table 21 Terpene content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls	77
Table 22 Terpenes content in both aqueous and ethanolic	
extracts of <i>P. sanctus</i> stems, leaves and galls	78
Table 23 Alkaloid content in both aqueous and ethanolic extracts	
of S. Herba-Album stems, leaves and galls	79
Table 24 Alkaloid content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls	81
Table 25 Alkaloid content in both aqueous and ethanolic extracts	
of <i>P. sanctus</i> stems, leaves and galls	85
Table 26 Organometallic content in aqueous and ethanolic	
extracts of S. Herba-Album stems, leaves and galls	88
Table 27 Organometallic content in aqueous and ethanolic	
extracts of <i>T. sinaicum</i> stems, leaves and galls	89
Table 28 Organometallic content in aqueous and ethanolic	
extracts of <i>P. sanctus</i> stems, leaves and galls	90
Table 29 Amine content in both aqueous and ethanolic extracts	
of S. Herba-Album stems, leaves and galls	91
Table 30 Amines content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls	92
Table 31 Amines content in both aqueous and ethanolic extracts	
of <i>P. sanctus</i> stems, leaves and galls	93
Table 32 Steroid content in both aqueous and ethanolic extracts	
of S. Herba-Album stems, leaves and galls	94
Table 33 Steroids content in both aqueous and ethanolic extracts	
of <i>T. sinaicum</i> stems, leaves and galls	95
Table 34 Steroids content in both aqueous and ethanolic extracts	
of <i>P. sanctus</i> stems, leaves and galls	96
Table 35 Sulfur containing compounds in aqueous and ethanolic	
extracts of stems, leaves and galls	97
Table 36 Triazine content in aqueous and ethanolic extracts of	
stems, leaves and galls of studied plants	98
Table 37 Benzopyrans content in both aqueous and ethanolic	
extracts of stems, leaves and galls of studied plants	99
Table 38 Vitamin content in both aqueous and ethanolic extracts	
of stems, leaves and galls of studied plants	100
Table 39 Xylenes, beta-lactans and alkanes identified in both	
aqueous and ethanolic extracts of S. Herba-Album stems, leaves	
and galls	101

Table 40 Galactoarabinan, lactones, quinones and hydrazine	
content in both aqueous and ethanolic extracts of T. sinaicum	
stems, leaves and galls tissues	102
Table 41 Epipherinse and phethalates content in both aqueous	
and ethanolic extracts of <i>P. sanctus</i> stems, leaves and galls	103

List of Figure

gure Title Pag	e
Fig. 1. Study sites within St. Katherine Protectorate	2
Fig. 2. Agilent Technologies 7890BGC System coupled to a Agilent Technologies 5977A MS	3
Fig. 3. Galls induced by <i>Rhopalomyia</i> sp. on stems of S. herbaalbum. A. The outward appearance of the gall. B. An opened gall under microscope with larval chambers (white arrows)	3
Fig. 4. Galls induced by <i>Rhopalomyia</i> sp. on stems of <i>T. sinaicum</i> .	
Fig. 5. Galls induced by <i>Rhopalomyia</i> sp. on stems of <i>P. sanctus</i> . A. The outward appearance of the gall. B. An opened gall under microscope with trichomes (black arrows), larval chambers (hollow arrows) and larva (white arrow).	3
Fig. 6. Cross sections of non-galled and galled stems of <i>S. herba-album</i> . A. Cross section of <i>S. herba-album</i> non-galled stem. B. Vascularization connected to gall tissue (black arrows). C. Larval chamber with compacted nutritive tissue cells and containing a larva (white arrows) and hairy non-glandular protective tissue (black arrows). D. Larval chamber contained no larva with storage nutritive tissue (white arrows). Ep, epidermis; Co, cortex; Sc, sclerenchyma; Ph, phloem; Xy, xylem; Pi, pith; ST, stem tissue; GT, gall tissue; LT, larval tissue; LC, larval chamber	
Fig. 7. Cross sections of non-galled and galled stems of <i>T. sinaicum</i> . A. Transverse section of <i>T. sinaicum</i> non-galled stem. B. Neoformations of vascular tissues within gall tissue (Black arrows) and non-glandular trichomes (white arrows) covering plant surface. C. Larval chamber with both compact nutrintive tissue (black arrow) and storage nutritive tissue (white arrows). D. Vascularization connected to gall tissue (white arrow). Ep, epidermis; Co, cortex; Ph, phloem; Mxy, meta-xylem; Pxy, proto-xylem; Tr, trichomes; Pi, pith; ST, stem tissue; GT, gall tissue; LT, larval tissue; LC, larval chamber.	3
Fig. 8. Cross sections of non-galled and galled stems of <i>P. sanctus</i> . A. Transverse section of <i>P. sanctus</i> non-galled stem. B.	4