

Systematic Review on Surgical Treatment of Dorsal Disc Prolapse

A Meta-Analysis

Submitted For Partial Fulfillment of Master Degree In Orthopedic Surgery

By **Mahmoud Talaat Atef** M.B.B.ch

Under supervision

Prof. Dr. Mohamed Abd El Salam Wafa

Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Fady Michel

Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

Dr. Assem Bastawesy

Lecturer of Orthopedic Surgery
Faculty of Medicine – Misr University for Science and Technology

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Abd El Salam Wafa**, Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Fady Michel, Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Assem Bastawesy**, Lecturer of Orthopedic Surgery Faculty of Medicine – Faculty of Medicine – Misr University for Science and Technology, for his great help, active participation and guidance.

Mahmoud Talaat Atef

List of Contents

Title	Page No.
List of Tables	Error! Bookmark not defined.
List of Figures	Error! Bookmark not defined.
List of Abbreviations	Error! Bookmark not defined.
Introduction	1
Aim of the Work	4
Review of Literature	
Applied Anatomy	5
 Pathogenesis & Clinical 	Presentation10
Radiology	16
■ Treatment	21
Methodology	48
Results of Meta-Analysis	59
Discussion	86
Summary	90
References	91
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1): Table (2):	Stages of Disc Herniation. Showing studies included in our analysis:	meta-	
Table (3):	Meta-analysis for the rate of ASIA S after surgery utilizing the as approaches.	score E nterior	
Table (4):	Meta-analysis for the rate of improvements by ASIA Score after surgery utilizing anterior approaches.	ng the	60
Table (5):	Meta-analysis for operative blood associated with surgery utilizing anterior approaches.	g the	62
Table (6):	Meta-analysis for the rate of complication associated with surgery utilizing anterior approaches.	g the	63
Table (7):	Complications of pts underwent di anterior approaches.		
Table (8):	Meta-analysis for the rate of improve by Frankle Score after surgery utilizing anterior approaches.	ing the	66
Table (9):	Changes occurred in pts on Frankle postoperative in different studies anterior approaches.	e score using	
Table (10):	Meta-analysis for JOA Score after s utilizing the anterior approaches	urgery	
Table (11):	Meta-analysis for the length of h stay after surgery utilizing the approaches.	ospital nterior	
Table (12):	Meta-analysis for the operative associated with surgery utilizing anterior approaches.	time g the	

List of Cables Cont...

Table No.	Title P	age No.
Table (13):	Meta-analysis for the duration of chest insertion associated with the ant approaches.	erior
Table (14):	Meta-analysis for the length of ICU associated with the anterior approaches	•
Table (15):	Meta-analysis for the rate of ASIA Sca after surgery utilizing the post approaches.	erior
Table (16):	Meta-analysis for the rate of improve by ASIA Score after surgery utilizing posterior approaches	g the
Table (17):	Postoperative changes on ASIA score:	
Table (18):	Meta-analysis for operative blood	
	associated with surgery utilizing posterior approaches	the
Table (19):	Meta-analysis for the rate of complica associated with surgery utilizing posterior approaches	tions the
Table (20):	Complications of pts underwent difference approaches	erent
Table (21):	Meta-analysis for the rate of improve by Frankle Score after surgery utilizing posterior approaches	ment g the
Table (22):	Changes occurred in pts on Frankle postoperative in different studies posterior approaches	score using
Table (23):	Meta-analysis for the recovery rate by Score after surgery utilizing the post approaches.	JOA cerior
Table (24):	Meta-analysis for JOA Score after surutilizing the posterior approaches.	rgery

List of Tables Cont...

Table No.	Title	Page No.
Table (25):	Meta-analysis for the length of h stay after surgery utilizing the po	sterior
Table (26):	Meta-analysis for operative time asso with surgery utilizing the po approaches.	sterior
Table (27):	Summary of results	85

List of Figures

Fig. No.	Title 1	Page No.
Figure (1): Figure (2):	Ligaments attached to thoracic verte Thoracic vertebra	
Figure (3):	Schematic representation of the structural features of an interver disc	tebral
Figure (4):	Herniated disc	11
Figure (5):	Stages of disc herniation (18)	12
Figure (6):	Sensory dermatomes of trunk region	15
Figure (7):	Discography	17
Figure (8):	T1 (A) and T2-weighted fast spin-ed sagittal images through the thoraci (straight arrow) and conusmed (curved arrow)	c cord ıllaris
Figure (9):	Exposure of thoracic disc provide standard laminectomy	ed by
Figure (10):	Incision of transthoracic approach	
Figure (11):	Transthoracic discectomy and l thoracic plate fixation (31).	ateral
Figure (12):	The introduction of the MaXcess ret into the thoracic cavity (32)	
Figure (13):	Thoracoscope (28).	
Figure (14):	Thoracoscopic excision of thoracic dis	
Figure (15):	Anatomical landmark for pedicle (
g (/-	and laminar bone cuts (dotted line)	
Figure (16):	Intraoperative view	
Figure (17):	Preoperative sagittal	
Figure (18):	Lateral extracavitery approach	

List of Abbreviations

Abb.	Full term
ΛD	Antoro postorior
	. Antero-posterior
CSF	Cerebrospinal fluid
CT	. Computed tomography
gTDH	. Giant thoracic disc herniation
LECA	. Lateral extracavitary approach
Mini-TTA	. Mini transthoracic approach
MITTD	. Minimally invasive transforaminal, thoracic microscopic discectomy
MRI	. Magnetic resonance imaging
PEEP	. Positive endexpiratory pressure
PLL	. Posterior longitudinal ligament
SSEP	. Somatosensory evoked potentials
TDH	. Thoracic disc herniation
TF	. Transfacet pedicle-sparing
TMED	. Thoracic microendoscopic approach
TP	. Transpedicular
VATS	. Video assisted thoracoscopic surgery

INTRODUCTION

The thoracic spine is the second segment of the vertebral column, located between the cervical and lumbar vertebral segments. It consists of twelve vertebrae, which are separated by intervertebral discs. Along with the sternum and ribs, the thoracic spine forms part of the thoracic cage. This bony structure helps protect the internal viscera – such as the heart, lungs and oesophagus (1).

Thoracic disc herniation has long been a difficult clinical entity to diagnose and, most certainly, to treat. Since Middletone and Teacher described central thoracic disc herniation secondary to trauma in 1911 ⁽¹⁾.

Numerous authors have described the entity as well as its diagnosis and treatment (2).

Clinical presentation is highly variable and is dependent on multiple factors. These include the location of the TDH (e.g., central, centrolateral, lateral), the size of the herniation, the duration of compression, the degree of vascular compromise, the size of the bony spinal canal, and overall health of the spinal cord and patient. Patients that have become symptomatic from their TDH usually present with one of three complaints: axial back pain, radicular pain, or myelopathy. Pain is the most common presenting symptom in up to 76 % of patients and may be localized to the middle or lower thoracic

spine and can radiate to the lower lumbar spine. Radicular pain, when present, may involve the anterior chest wall in a band-like dermatomal distribution or may radiate to the groin, abdomen, or lower limb. Paresthesias or dysesthesias may accompany the pain, in up to 61 % of patients. Myelopathy, the most severe of the three presentations, can include muscle weakness and paraparesis than can progress to a severe state of complete paraplegia (3).

Thoracic disease imaging examination begins with AP and lateral x-rays. These films provide insight into the overall alignment of the thoracic spine and may display any obvious fractures or neoplastic processes. Degenerative changes are well, including identifiable as disc space narrowing, osteophytes, and facet arthrosis. Calcification of the disc is visible in approximately 45–71 % of symptomatic discs versus only 4-6 % of the time in asymptomatic discs on plain radiographs. The imaging modality of choice, however, in those patients that thoracic disc disease and/or herniation is suspected is an MRI. This study is noninvasive, does not expose patients to ionizing radiation, and highlights degenerative disc changes, herniations, and neural element compression with significant detail in both the sagittal and axial planes. Location of the herniation within the canal is easily determined. As mentioned previously, MRI is very sensitive and not necessarily specific in detecting TDHs (3).

Patients who are not experiencing significant neurologic dysfunction secondary to thoracic disc herniation may be managed non-operatively. Initial treatment for those with axial back pain may include a brief period of bed rest, activity modification, and the use of over-the-counter or prescription non-steroidal anti-inflammatory medication (4).

Candidates for surgery include those patients with myelopathy on presentation; progressive neurologic deterioration; severe, intractable radicular pain; and radicular pain that has not improved after a comprehensive course of conservative treatment (3).

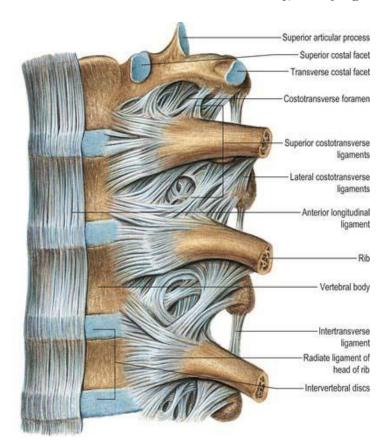
In early cases, a number of authors have discussed the treatment of thoracic discs via posterior surgical approach (5).

In 1958 Crafoored et al were the first to describe an anterior thoracic approach to try to decrease complications attributed to posterior approach ⁽⁶⁾.

In 1960, Hulme confirmed their findings by further describing the transthoracic anterior approach (7).

AIM OF THE WORK

This study aims to review the currently available data published for surgical management of dorsal disc prolapse.


Chapter 1

APPLIED ANATOMY

The Thoracic Intervertebral Disc:

Unlike the wedge-shape discs of the cervical and lumbar spines, thoracic discs are nearly uniform in shape. Thus, the form of the vertebral bodies—and not the intervertebral discs—determines the kyphosis of the thoracic spine. The height of the intervertebral disc is the narrowest in the thoracic spine, with a disc to vertebral body height ratio of 1:5, compared to a 1:3 ratio observed in the lumbar spine. In general, discs are thinner in the upper thoracic region, and the thicker in the lower thoracic region. This may explain the greater incidence of disc lesions in the lower thoracic region, in concert with decreased support from ribs not having direct attachment to the sternum and increased load of the body weight ⁽⁸⁾.

The intra-articular ligaments divide the costovertebral joints into separate synovial cavities. Direct contact of the ribs to the disc limits protrusion of disc material in a posterolateral direction. Of clinical significance is the instance of disc narrowing; as the disc narrows, pressure on the head of the rib increases, leading to costovertebral arthrosis (Fig 1) ⁽⁹⁾.

Figure (1): Ligaments attached to thoracic vertebrae ⁽⁹⁾.

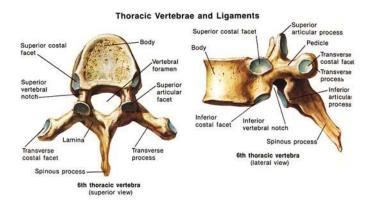


Figure (2): Thoracic vertebra (9).