

The effect of *Lactobacillus acidophilus as* a probiotic against *Pseudomonas aeruginosa* growth and biofilm formation

Thesis

Submitted for Partial Fulfillment of Master Degree in Basic Medical Sciences (Medical Microbiology & Immunology)

Presented by

Shaimaa Adel Mohammed El-badri Soliman

M.B.B.Ch.

Faculty of medicine-Ain Shams University

Under supervision of Prof. Dr.Marwa Saad Fathi

Professor of Medical Microbiology and Immunology Faculty of Medicine-Ain Shams University

Dr. Amira Esmail Abdel Hamid

Lecturer of Medical Microbiology and Immunology Faculty of Medicine-Ain Shams University

Assist.Prof. Dr. Hanaa Moohamed Abd Allah El Gendy

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgment

Thanks first and last to **ALLAH** for his guidance, support and care in every step throughout my life.

I have the greatest pleasure to express my deepest appreciation to Assist Prof. Dr. Marwa Saad Fathi, Assistant Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her unlimited help, guidance, suggestions and supervision, as well as her kindness and continuous advice to ensure that this work would reach an efficient level.

I wish to express my profound gratitude to **Dr. Amira Esmail Abdel Hamid,** Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her kind help and assistance, valuable supervision, support, precious opinions and contributive comments that served much in the construction of this work.

Also, I want to express my great thanks to Assist Prof. Dr. Hanaa Mohamed Abd Allah El Gendy, Assistant Professor of Anesthesia, Intensive Care and Pain managent, Faculty of Medicine Ain Shams University, for her guidance and help.

My greatest thanks to all my colleagues in the department of Medical Microbiology and Immunology for their cooperation and advice.

Finally I would like to acknowledge with gratitude the support, continuous encouragement and love of my family: the soul of my father, my gorgeous mother the origin of my success and my great husband and son Adam.

List of Contents

	Page No.
•	List of Abbreviations
•	List of Figures
•	List of TablesVII
•	Abstract & key words
•	Introduction
•	Aim of the Workii
•	Review of Literature:
	Chapter (I): An overview on bacterial biofilm
	o Chapter (II): <i>Pseudomonas aeruginosa</i> as strong biofilm produccer
	o Probiotics & Lactobacillus acidophilus
•	Patients and Methods
•	Results
•	Discussion
•	Summary
•	Conclusion
•	Recommendations 97
•	References
•	Arabic Summary

List of Abbreviations

A	AHLs	Acylated homoserine lactones
	AIDs	Acquired immunodeficiency syndrome
	AME	Aminoglycoside modifying enzymes
	AMPs	Antimicrobial Peptides
	ATPase	Adenosine triphosphatase
C	°C	Degrees Celsius
	C.albicans	Candida albicans
	CF	cystic fibrosis
	CFU	Colony forming unit
	CTAs	Cancer-testis antigens
D	Dept	Department
	DNA	Deoxyribonucleic acid
	DNAses	Deoxyribonucleases
E eDNA		Extracellular DNA
	EDTA	Ethylenediaminetetraacetic acid
	EPS	Extracellular polymeric substances
	E-coli	Escherichia coli
	ESBLs	extended-spectrum β-lactamases
F	FAO	Food and Agriculture Organization
G	GALT	Gut-associated immune cells
	G. vaginalis	Gardenella vaginalis
	Gm	Gram
Н	HAI	Health care associated infections
	H_2O_2	Hydrogen peroxide
	HDL	High density lipoprotein
	HGT	Horizontal gene transfer

	Hrs	Hours			
	HSL	Homoserine lactone			
Ι	ICUs	Intensive care units			
	IgA	Immunoglobulin A			
	IL	Interleukin			
	IFN-γ	Interferon gamma			
k	KD	Killo Dalton			
	LAB	Lactic acid bacteria			
L	L.acidophilus	Lactobacillus acidophilus			
	LDL	low density lipoprotein			
M	MBC	minimum bactericidal concentration			
	MDEPs	multidrug efflux pumps			
	MDR	Multi drug resistance			
	MMRS	methyl- directed mismatch repair system			
	Mg	Milligram			
	μg	Microgram			
	MIC	Minimum inhibitory concentration			
	Min	Minute			
	Ml	Milliliter			
	μL	Microliter			
	Mub	Mucus-binding protein			
	MTP	Microtitre plate			
N	N. gonorrhoeae	Nisseria gonorrhoeae			
0	Opr	Outer membrane protein			
Р	P.aeruginosa	Pseudomonas aeruginosa			
	PVC	polyvinylchloride			
	QS	Quorum sensing			
ď	QSIs	Quorum sensing inhibitors			

R	ROS	radioactive oxygen species		
S	S. agalactiae	Streptococcus agalactiae		
S	S.aureus	Staphylococcus aureus		
_	$T_{ m reg}$	Regulatory T cells		
'	Th2	T helper 2		
u	UC	Urinary catheter		
W	WHO	World Health Organization		

♥ List of Figures **♥**

Figure No.	Title	Page No.
Figure (1):	a A model of a bacterial biofilm attached to a surface. b The major matrix components	
Figure (2):	Different phases of biofilm formation	6
Figure (3):	Quorum sensing	11
Figure (4):	Biofilm and antibiotic resistance	15
Figure (5):	Antibiotics and persister cells in biofilm	16
Figure (6):	Strategies aimed at disrupting biofilm formation	25
Figure (8):	Gram negative bacterial envelop	32
Figure (9):	The 3 proteins components of MDEPs	33
Figure (10):	MexAB-oprM in P. aeruginosa	33
Figure (11):	Mechanisms of HGT	37
Figure (12):	Structure of cell envelope of <i>L.acidophilus</i>	42
Figure (13):	Show different mechanism of actions of pro Lactobacilli	
_	A plate of CLED agar medium cultured with sample	
Figure (15):	Inoculated plate of MacConkey's agar showing lactose fermenting colonies	
Figure (16):	Exopigment production on Nutrient agar slope, and Non-lactose fermenting colonies onMacCoagar	onkey's
Figure (17):	Biochemical reactions of <i>P.aeruginosa</i>	56
Figure (18):	Rose pink colonies on macConky	57

Figure (19):	Mucoid pink colonies on macConky	57
Figure (20):	Yeast cells of <i>C. albicans</i>	57
Figure (21):	C. albicans showing positive germ tube test	57
Figure (22):	Template for applying antimicrobial discs	58
Figure (23):	A plate of MHA streaked for antibiotic susceptibility testing of <i>P. aeruginosa</i> isolate	59
Figure (24):	A plate of MHA streaked for antibiotic susceptibility testing of <i>P. aeruginosa</i> isolate which was multi drug resistant, but sensitive to Aztreonam	60
Figure (25):	Lyophilized <i>L.acidophilus</i> ATCC 4356 & MRS agar plat	60
Figure (26):	Illustrated instruction for culture methods of the lyophilized <i>L.acidophilus</i> ATCC 4356	61
Figure (27):	Microscopic examination of a Gram stained film of Lacidophilus	61
Figure (28)	Cell-free supernatant filtered with 0.20 μ Porous membranes	62
	different diameters of the growth inhibitory zone of L. acidophilus on P. aeruginosa	63
Figure (30):	MTP after washing with distilled water	64
Figure (31):	: MTP showing the effect of <i>L.acidophilus</i> against biofilm formations of different <i>P.aeruginosa</i> strains	65
Figure (32):	Strains of <i>P.aeruginosa</i> were 1st allowed to grow in wells for 24 h and form biofilms	67.
Figure (33):	After adding cell-free supernatant of <i>L.acidophilus</i> to the 2 nd 3 wells in all rows and incubation for another 24 hours	67
Figure (34):	Shows the effect of <i>L.acidophilus</i> against preformed biofilm of different <i>P.aeruginosa</i> strains after staining	68

Figure (35):	Gender distribution among the patients having UTI caused by <i>P. aeruginosa</i>
Figure (36):	Antimicrobial resistance pattern of the isolated <i>P. aeruginosa</i> strains
Figure (37):	High statistical significance in resistance to Gentamycin in patient taking immunosuppressive drugs
Figure (38):	The percentage of <i>P.aeruginoa</i> isolated strains inhibited by <i>L.acidophilus</i>
Figure (39):	Degree of biofilm formation by the isolated <i>P.aeruginosa</i> strains
Figure (40):	The effect of <i>L.acidophilus</i> cell- free supernatant on biofilm forming <i>P.aeruginosa</i> isolated strains as illustrated by decrease in OD
Figure (41):	The effect of <i>L.acidophilus</i> cell- free supernatant on biofilm forming <i>P.aeruginosa</i> isolated strains as illustrated by decrease in biofilm forming ability
Figure (42):	The effect of <i>L.acidophilus</i> cell free supernatant on the preformed biofilms of <i>P.aeruginosa</i> strains as illustrated by the decrease in OD
Figure (43):	The effect of <i>L.acidophilus</i> cell free supernatant on the preformed biofilms of <i>P.aeruginosa</i> strains as illustrated by decreasing the biofilm forming ability 85
Figure (44):	Difference in OD after mixing wih <i>L.acidophius</i> with P. aeruginosa isolates before biofilm growth and after adding on preformed <i>P.aeruginosa</i> biofilm
Figure (45):	Difference in biofilm forming ability of <i>P. aeruginosa</i> isolates after adding <i>L.acidophius</i> cell free supernatant before and after biofilm formation by <i>P. aeruginosa</i> isolates
Figure (46):	Relation between biofilm forming ability of <i>P. aeruginosa</i> isolates and age of the patients

Figure (47):				U	•			
	aeruginos	a isolates	and the du	aration of s	stay in IC	CU	•••••	88
Figure (48):	Relation aeruginos			C	•			
	catheter	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	88

❤ List of Tables **ॐ**

Table No.	Title Pa	ge No.
Table (1):	Examples of drug affected by up regulation of genese efflux pump as described in	
Table (2):	Criteria for selection of probiotic strains	40
Table (3):	Effect of different Lactobacilli strains on Inflammate cytokines	-
Table (4):	Nutritional benefits & potential health of for prepared with probiotic bacteria	
Table (5):	Health benefits by different probiotic strains	52
Table (6):	Identification of isolated organisms	56
Table (7):	Antibiotic discs used for antibiotic susceptibile testing for isolated <i>P. aeruginosa</i> strains and the zones diameter breakpoints	neir
Table (8):	Demographic data of the patients	70
Table (9):	Clinical data of the patients included in this study	71
Table (10):	Frequency of <i>P.aeruginosa</i> and other organis isolated from the 135 urine samples	
Table (11):	Organisms identified in samples showing mix infections together with <i>P. aeruginosa</i>	
Table (12):	The relation between the application of uring catheter and occurrence of UTI by <i>P.aeruginosa</i>	•
Table (13):	The relation between prior antibiotic intake a occurrence of UTI by <i>P.aeruginosa</i>	
Table (14):	The relation between immunosuppressive drugs into and occurrence of UTI by <i>P.aeruginosa</i>	

Table (15):	Antibiotic susceptibility testing results of isolated <i>P.aeruginosa</i> strains	75
Table (16):	Statistical analysis between antibiotic susceptibly and prior antibiotics intake	77
Table (17):	Statistical analysis between antibiotic susceptibly and immunosuppressive drugs intake	78
Table (18):	Statistical analysis between antibiotic susceptibly and the application of urinary catheter	80
Table (19):	Effect of <i>L. acidophilus</i> on the growth of <i>P. aeruginosa</i> by agar well diffusion	81
Table (20):	Degree of biofilm formations among different isolated <i>P.aeruginosa</i> strains	82
Table (21):	The effect of <i>L.acidophilus</i> cell free supernatant on biofilm formation by <i>P.aeruginosa</i> strains	83
Table (22):	The effect of <i>L.acidophilus</i> on the preformed biofilm of <i>P.aeruginosa</i> strains	84
Table (23):	Relation between the biofilm forming ability of <i>P.aeruginosa</i> isolated strains and some demographic and clinical data	.87

Abstract

The antibiotic-resistant emergence of microorganisms Pseudomonas aeruginosa has pushed efforts to find safe alternatives of antibiotics as probiotics which include Lactobacilli strains with a large antibacterial and anti- biofilm effects against different pathogenic strains. Antibiotic susceptibility test and antibiogram were done for 35 isolated P. aeruginosa strains from ICU patients followed by assessment of Lactobacillus acidophilus antibacterial as and antibiofilm formation/removal against them by using different methods. The results showed that among the 35 P. aeruginosa strains, 1 (2.8%), 2 (5.7%), and 32 (91.4%) were PDR, XDR, and MDR, respectively. The effective antibiotics against them was Aztreonam. L.acidophilus with ATCC 4356, showed powerful inhibition and anti-biofilm effects against all isolated P. aeruginosa strains. It significantly inhibits biofilms by 68.52% with mean optical density reading 0.72 ± 0.44 and removes already formed biofilms by 43.8 % with mean optical density reading 1.28 \pm 0.65. It was concluded that L.acidophilus can be used in bio-control of different antibiotic resistant biofilm producing *P.aeruginosa* strains.

Key words:

Antibiotic resistance. Lactobacillus-acidophilus. Probiotic. Pseudomonas-aeruginosa

Introduction

Bacterial biofilms are complex structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses and are much less susceptible to antibiotics and disinfectants when compared to their planktonic counterparts. Diseases associated with biofilms require great methods for their prevention, diagnosis and treatment (*Tremblay et al.*, 2014).

P. aeruginosa causes a threatening diseases world wide especially in compromised immunity. it's one of the most common causes of recurrent UTI. The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) strains of P. aeruginosa that are treated difficulty with current antibiotics causes wide efforts for finding an alternative approach for treatment (Gomila ,et al., 2013; Ha D, O'Toole, 2015)

Probiotics are defined as live nonpathogenic microorganisms that when administered in adequate amounts confer a health benefit on the host, The use of probiotics especially *L.acidophilus* as safe and natural live microorganisms against other microorganisms are considered as an alternative to antibiotics (*Hill, et al.,2014; Chatterjee , et al., 2015*)

As a probiotic, *L.acidophilus* can be active as microbial barriers against pathogens by competition with them for binding sites, enhancement of the host's immune responses and production of antimicrobial substances as hydrogen peroxide, organic acids like lactic, formic, acetic, propionic and butyric acids together with proteinaceous

i

Introduction

compounds as bacteriocins, bacteriocin-like components (Marianelli et al, 2010).

L.acidophilus has potent activity of biofilm inhibition/removing, in addition to its antibacterial effect. This proposes it as potential probiotics for bio-control of antibiotic-resistant *P. aeruginosa* strains as alternative to antibiotics (*Shokri et al.*, 2018).