

Dept. of Microbiology

Effect of Bacterial Proteolytic enzymes on Virulence and Pathogenicity of Avian Influenza Virus

A Thesis Presented By Sherein Galal Mohamed Khoulosy

(M.V.Sc, Cairo University)
For PhD Degree in Veterinary Medical Sciences, Microbiology
(Bacteriology, Immunology and Mycology)

Under the Supervision of

Prof. Dr. Salah El-Dein Abdel Kareim Selim

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed S. Shehata
Professor of Microbiology Faculty
of Veterinary Medicine
Cairo University

Prof. Dr. Soad A.A. Abdel Wanis Chief Researcher of Poultry Diseases Animal Health Research Institute

" وقل رب زوني علما "

(سورة طه – اية ١١٤)

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Sherein Galal Mohamed Khoulosy

<u>Degree:</u> PhD Degree in Veterinary Medical Sciences, Microbiology (Bacteriology, Immunology and Mycology)

<u>Title of Thesis</u>: Effect of Bacterial Proteolytic enzymes on Virulence and Pathogenicity of Avian Influenza Virus

Supervisors:

Prof. Dr. Salah El-Dein Abdel Kareim Selim , Professor of Microbiology, Dept. of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Ahmed Samir Shehata

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Soad Abdel Aziz Abdel Wanis

Chief Researcher of Poultry Diseases, Animal Health research Institute

Abstract

Two thousands cloacal swabs were collected from 100 poultry farms showing respiratory and diarrheic sings. All samples were examined bacteriologically for isolation of *E.coli & Salmonella*. The results revealed detection of *Salmonella* in 31 farms out of 100 examined farms with percentage 31%. Isolation of *E.coli* was carried out and the results revealed isolation of *E.coli* from 67 farms with percentage 67% of examined 100 poultry farms. Detection of the proteolytic enzymes produced by bacterial isolates was done using Protease Agar Casein Assay. All collected samples were examined for detection of Avian Influenza viruses using RRT–PCR. HPAI (H5N1) virus was detected in 10 farms while LPAI (H9N2) was detected in 31 farms out of 100 examined farms. Effect of co-infection with HPAI & LPAI and proteolytic bacteria (*Salmonella Enteritidis* and *E.coli* O158) was carried out in SPF chicken. Morbidity and mortality were recorded as well as re-isolation and virus shedding were done

Dedication

Formy
Father

Mother

Brothers (Ahmed and Mustafa)

Sister (Azza)

My Friends

I hope that they will be happy, with my deep thanks for their support during the work.

Acknowledgment

First and always, my sincere gratitude and thanks for **[ALLAH]** for all his gifts allover my life, his guidance and care made this study came to light

I would like to express my deep gratitude and appreciation to **Prof. Dr. Salah El-Dein Abdel Kareim Selim**, Professor of Microbiology, Dept. of Microbiology, Faculty of Veterinary Medicine, Cairo University for his valuable help, sincere advice and great support to produce this research

I would like to express my thanks to **Prof. Dr. Ahmed Samir,** Professor of Microbiology, Dept. of Microbiology, Faculty of Veterinary Medicine, Cairo University for his assistance, advice to produce this research

I would like to express my appreciation to **Prof. Dr. Soad Abdel Aziz** Technical Manager for Bacteriology, Reference
Laboratory for Veterinary Quality Control on Poultry Production,
for her assistance, sincere advice and great support during my
research

I would like to thank **Prof. Dr Mona Mehrez**, **Vice Minister of Agriculture**, **Prof. Dr. Momtaz Shahin**, **Director of Animal Health Research Institute** for their support, all the members of Bacteriology Dept. Biotechnology Dept., Animal House Unit with special reference to **Dr. Walid Hamdy Kilany**, Head of Animal House Unit, **Dr. Ahmed Shawky**, staff of Animal House Unit, all staff of epidemiology Unit and also all the members of National Laboratory for Veterinary Quality Control on Poultry Production with reference to **Dr. Abdullah Selim**, Technical Manager for Virology for their help, efforts and continuous assistance.

List of Contents

Title	Page
1- Introduction	1-6
2-Review of literature	7-47
2-2 Viral –Bacterial association infections	7
2-3 Incidence of Salmonella species in poultry farms	14
2-4 Incidence of <i>E.coli</i> species in poultry farms	27
2-4 Detection of the proteolytic enzymes produced by bacterial isolates using Protease Agar Casein Assay	34
2-5 Incidence of Avian Influenza viruses in poultry farms	37
2-6 Cytopathic effect of LPAI virus in cell culture in the	45
presence of bacterial protease	
3- Material and Methods	48-99
3-1 Material	48
3-1-1 Samples	48
3-1-2 Media used for isolation of Salmonella spp.	49
3.1.3. Media used for biochemical identification of <i>Salmonella</i> spp.	50
3.1.4. Chemicals and reagents used for biochemical	51
identification of Salmonellae.	<i>E</i> 1
3.1.5. Stain used	51
3.1.6. Diagnostic antisera	51 51
3.1.7. Equipment used for the isolation, identification and detection of <i>Salmonella</i>	
3-1-8 Materials used for PCR technique	52
3-1-9 Equipment and apparatus used for PCR Technique	56
3-1-10 Standard bacterial strains	57 57
3-1-11. Media used for isolation of <i>E.coli</i> spp.	57 59
3-1-12.Media used for biochemical identification of <i>E.coli</i>	58
3-1-13. Diagnostic antisera	59
3-1-14. Materials and equipment used for PCR	60
amplification of <i>E.coli</i> isolates	65
3-1-15 Media used for detection of the proteolytic enzymes	65
produced by bacterial isolates	((
3-1-16 Material used for detection of Avian Influenza virus	66
by Real Time PCR	70
3-1-17. Cytopathic effect of Low Pathogenic Avian	70
influenza in cell culture in the presence of bacterial	
proteolytic enzymes	

Title	Page
3-1-18. Materials used to study the effect of proteolytic	72
bacteria on pathogenicity of AI viruses (H5N1 &	
H9N2)	- 4 00
3-2 Methods	74-99
3-2-1 Handling and preparation of collected cloacal swabs	74
for isolation of Salmonella Spp.	7.4
3-2-2 Procedure for detection of Salmonella spp.	74 75
3-2-3 Selection of colonies for confirmation of <i>Salmonella</i>	75 75
3-2-4 Microscopic identification of Salmonella	75 76
3-2-5 Biochemical identification of <i>Salmonella spp</i> .	76 76
3-2-6 Serotyping of <i>Salmonella</i> spp. 3-2-7 Polymerase Chain Reaction (PCR) for detection of	78 78
Salmonella	78
3-2-8 Isolation and identification of <i>E.coli</i>	82
3-2-8-1. Procedure for detection of <i>E.coli</i>	82
3.2.8.2. Microscopical examination	83
3.2.8.3. Biochemical identification of <i>E.coli</i> isolates:	83
3.2.8.4. Serotyping of <i>E.coli</i> isolates	85
3.2.8.5 Polymerase Chain Reaction (PCR) for <i>E.coli</i>	86
identification	
3-2-9 Protease Agar Casein Assay used for detection of the	89
proteolytic enzymes produced by bacterial isolates	
3-2-10 Method used for detection of Avian Influenza virus	90
by REAL TIME PCR	
3-2-11. Cytopathic effect of Low Pathogenic Avian	95
influenza in cell culture in the presence of bacterial	
proteolytic enzymes	
3-2-12. Procedures for experimental infection of chicken to	97
study the effect of proteolytic bacteria on	
pathogenicity of AI viruses (H5N1 & H9N2)	
4- Results	100-127
5- Discussion	128-144
6- Summary	145-147
7- Conclusion	148
8- References	149-177 ۳-۱
Arabic summary	1 – 1
Arabic abstract	

List of Tables

No	Title	Page
1	Number of examined chicken farms from 7	
	governorates	49
2	Oligonucleotide Primers sequences used for	
	amplification of DNA for the detection of Salmonella	
	species	53
3	Reference bacterial strains cultures used for quality	
4	assurance and PCR specificity	57
4	Monovalent specific antisera used in the serotyping of	5 0
5	E.coli serovars	59
5	Oligonucleotide primers sequences used for	62
6	amplification of DNA for the detection of <i>E.coli</i> The oligonucleotide for amplification of part of M gene	02
U	for AIV by REAL TIME PCR	68
7	The oligonucleotide for amplification of part of H5 gene	00
,	for AIV-H5 by REAL TIME PCR	68
8	The oligonucleotide for amplification of part of H9 gene	00
	for AIV-H9 by REAL TIME PCR	69
9	Biochemical confirmation of Salmonella spp.	76
10	Thermal cycler steps of Salmonella DNA amplifications	80
11	Biochemical character of <i>E.coli</i> isolates	85
12	Thermal cycler steps of <i>E.coli</i> DNA amplifications	88
13	Real-Time PCR Reaction Mix Volumes	91
14	Thermal cycling conditions for gene-specific Probe and	
	Primer sets for influenza virus Type A	92
15	Thermal cycling conditions for gene-specific Probe and	0.0
1.6	Primer sets for influenza virus H5	92
16	Thermal cycling conditions for gene-specific Probe and	0.2
17	Primer sets for influenza virus H9	93
17	Experiment groups and challenge doses	98 99
18 19	Experiment Sampling Providence of Salmonella among broiler forms	99 100
20	Prevalence of <i>Salmonella</i> among broiler farms Prevalence of <i>Salmonella</i> among layer farms	100
21	Total prevalence of <i>Salmonella</i> in examined chicken	101
<i>4</i> 1	farms	101
22	Antigenic structure of isolated <i>Salmonella</i> Serovars	103

No	Title	Page
23	Percentage of Salmonella serovars isolated from cloacal	
	samples collected from poultry flocks	104
24	Most prominent signs appeared in poultry flocks	
	infected with Salmonella spp.	105
25	Prevalence of <i>E.coli</i> among broiler farms	108
26	Prevalence of <i>E.coli</i> among layer farms	108
27	Total prevalence of <i>E.coli</i> in examined chicken farms	110
28	Percentage of <i>E.coli</i> serogroups isolated from poultry	
	flocks	110
29	Serogrouping of <i>E.coli</i> isolates	111
30	Most prominent signs appeared in poultry flocks	
	infected with E.coli serogroups	112
31	Results of detection of stx1 gene of E.coli isolates	
	recovered from chickens	113
32	Results of detection of eaeA gene of E.coli isolates	
	recovered from chickens	114
33	Results of detection of iss gene of E.coli isolates	
	recovered from chickens	116
34	PCR results for detection of viral infection in samples	
	from Broiler farms	119
35	PCR results for detection of viral infection in samples	
	from Layer farms	120
36	Total prevalence of AI viruses in examined poultry	
	farms	120
37	The daily mortalities of LPAI H9N2 challenged groups	123
38	The daily mortalities of HPAI H5N1 challenged groups	124
39	Specific cumulative mortalities in all groups challenged	
	with A1 viruses	125
40	Overall percentage of re-isolation of <i>E.coli</i> and	
	Salmonella from different organs of SPF chicken,	
	necropsied on day 6, 8 and 10th day post-viral	
	infection	126
41	Mean of virus shedding in samples collected at 6th, 8th	
	and 10th day post viral inoculation	127

List of Figures

No	Title	Page
1	Prevalence of Salmonella among examined commercial	
1	chicken farms	102
2	Percentage of Salmonella serovars isolated from poultry	
_	flocks	104
	Agarose gel electrophoresis showing positive	
3	amplification of 284 bp fragments using 139 – 141	
	primers specific for the <i>invA</i> gene from extracted DNA of <i>Salmonella Enteritidis</i>	106
	Agarose gel electrophoresis showing positive	100
	amplification of 488 bp fragments using A058 - A01	
4	primers specific for the sefA gene found in Salmonella	
	Enteritidis from extracted DNA of one standard strains	
	of Salmonella Enteritidis	107
5	Prevalence of <i>E.coli</i> among examined commercial	
3	chicken farms	109
6	Percentage of <i>E.coli</i> serogroups isolated from poultry	111
	farms	111
	Agarose gel electrophoresis showing amplification of 614 bp fragment using PCR, performed with primer	
7	specific for <i>stx</i> 1genegene of <i>E.coli</i> isolated from	
	chickens.	113
	Agarose gel electrophoresis showing amplification of	115
8	890 bp fragment using PCR, performed with primer	
	specific for eae A gene of E.coli isolated from chickens	115
	Agarose gel electrophoresis showing positive	
9	amplification of 266 bp fragment using PCR, performed	
	with primer specific for iss gene of E.coli isolated from	116
10	chickens.	116
10	Agar Casein Test protease positive bacteria isolates Cytopathic effect of the Avian Influenza virus (H9N2)	117
11	with proteolytic enzymes on MDCK cells (20X)	121
	with proteorytic chizymes on MDCR cens (20A)	141